Need help solving heat equation using adi method

3 Ansichten (letzte 30 Tage)
Vard
Vard am 12 Mai 2024
Bearbeitet: Vard am 16 Mai 2024
Nx = 50;
Ny = 50;
dx = 1.0 / (Nx - 1);
dy = 2.0 / (Ny - 1);
T = 0.00001;
dt = 0.000000001;
Nt = 1000; % Total number of time steps
alpha = 4; % Diffusion coefficient
x = linspace(0, 1, Nx);
y = linspace(0, 2, Ny);
[X, Y] = meshgrid(x, y);
U = Y .* X + 1; % Initial condition
function val = f(x, y, t)
val = exp(t) * cos(pi * x / 2) * sin(pi * y / 4);
end
function U = apply_boundary_conditions(U, x, y, dy, dx)
U(:, 1) = 1; % y=0
U(:, end) = U(:, end-1) + dy .* x'; % y=2
U(1, :) = U(2, :) - dx * y; % x=0
U(end, :) = y' + 1; % x=1
end
% Thomas algorithm
function x = thomas_algorithm(a, b, c, d)
n = length(d);
c_star = zeros(n-1, 1);
d_star = zeros(n, 1);
x = zeros(n, 1);
c_star(1) = c(1) / b(1);
d_star(1) = d(1) / b(1);
for i = 2:n-1
temp = b(i) - a(i-1) * c_star(i-1);
c_star(i) = c(i) / temp;
d_star(i) = (d(i) - a(i-1) * d_star(i-1)) / temp;
end
d_star(n) = (d(n) - a(n-1) * d_star(n-1)) / b(n);
x(n) = d_star(n);
for i = n-1:-1:1
x(i) = d_star(i) - c_star(i) * x(i+1);
end
end
% ADI method
for n = 1:Nt
U = apply_boundary_conditions(U, x, y, dy, dx);
% First half-step: X-direction implicit, Y-direction explicit
for j = 2:Ny-1
a = -alpha * dt / (2 * dx^2) * ones(Nx-1, 1);
b = (1 + alpha * dt / dx^2) * ones(Nx, 1);
c = -alpha * dt / (2 * dx^2) * ones(Nx-1, 1);
d = U(j, 2:end-1)' + 0.5 * alpha * dt / dy^2 * (U(j+1, 2:end-1) - 2 * U(j, 2:end-1) + U(j-1, 2:end-1))' + dt * f(x(2:end-1), y(j), n*dt);
U(j, 2:end-1) = thomas_algorithm(a, b(2:end-1), c, d);
end
% Second half-step: Y-direction implicit, X-direction explicit
for i = 2:Nx-1
a = -alpha * dt / (2 * dy^2) * ones(Ny-1, 1);
b = (1 + alpha * dt / dy^2) * ones(Ny, 1);
c = -alpha * dt / (2 * dy^2) * ones(Ny-1, 1);
d = U(2:end-1, i) + 0.5 * alpha * dt / dx^2 * (U(2:end-1, i+1) - 2 * U(2:end-1, i) + U(2:end-1, i-1)) + dt * f(x(i), y(2:end-1), n*dt);
U(2:end-1, i) = thomas_algorithm(a, b(2:end-1), c, d);
end
U = apply_boundary_conditions(U, x, y, dy, dx);
end
% Visualization
surf(X, Y, U);
title('ADI Solution at T=' + string(T));
xlabel('X');
ylabel('Y');
zlabel('U');
colorbar;
  1 Kommentar
Torsten
Torsten am 12 Mai 2024
Shouldn't your solution array be three-dimensional instead of two-dimensional ? The way you arranged the code, you only get one solution at time T - the complete history for U is overwritten.

Melden Sie sich an, um zu kommentieren.

Antworten (1)

John D'Errico
John D'Errico am 12 Mai 2024
You say it works for sufficiently small values dt.
With that exp(t) term in there, do you seriously expect it to work well for large values of dt? I have dreams myself somedays...
  19 Kommentare
Vard
Vard am 13 Mai 2024
@Torsten Do you have a another solution with using three dimensional arrays?
Torsten
Torsten am 13 Mai 2024
Bearbeitet: Torsten am 13 Mai 2024
If your code were correct, you could simply save the solution matrix U after each time step in a three-dimensional matrix:
U_3d = zeros(Nt,Ny,Nx)
for nt = 1:Nt
...
U_3d(nt,:,:) = U;
end

Melden Sie sich an, um zu kommentieren.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by