Need help solving heat equation using adi method
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Nx = 50;
Ny = 50;
dx = 1.0 / (Nx - 1);
dy = 2.0 / (Ny - 1);
T = 0.00001;
dt = 0.000000001;
Nt = 1000; % Total number of time steps
alpha = 4; % Diffusion coefficient
x = linspace(0, 1, Nx);
y = linspace(0, 2, Ny);
[X, Y] = meshgrid(x, y);
U = Y .* X + 1; % Initial condition
function val = f(x, y, t)
val = exp(t) * cos(pi * x / 2) * sin(pi * y / 4);
end
function U = apply_boundary_conditions(U, x, y, dy, dx)
U(:, 1) = 1; % y=0
U(:, end) = U(:, end-1) + dy .* x'; % y=2
U(1, :) = U(2, :) - dx * y; % x=0
U(end, :) = y' + 1; % x=1
end
% Thomas algorithm
function x = thomas_algorithm(a, b, c, d)
n = length(d);
c_star = zeros(n-1, 1);
d_star = zeros(n, 1);
x = zeros(n, 1);
c_star(1) = c(1) / b(1);
d_star(1) = d(1) / b(1);
for i = 2:n-1
temp = b(i) - a(i-1) * c_star(i-1);
c_star(i) = c(i) / temp;
d_star(i) = (d(i) - a(i-1) * d_star(i-1)) / temp;
end
d_star(n) = (d(n) - a(n-1) * d_star(n-1)) / b(n);
x(n) = d_star(n);
for i = n-1:-1:1
x(i) = d_star(i) - c_star(i) * x(i+1);
end
end
% ADI method
for n = 1:Nt
U = apply_boundary_conditions(U, x, y, dy, dx);
% First half-step: X-direction implicit, Y-direction explicit
for j = 2:Ny-1
a = -alpha * dt / (2 * dx^2) * ones(Nx-1, 1);
b = (1 + alpha * dt / dx^2) * ones(Nx, 1);
c = -alpha * dt / (2 * dx^2) * ones(Nx-1, 1);
d = U(j, 2:end-1)' + 0.5 * alpha * dt / dy^2 * (U(j+1, 2:end-1) - 2 * U(j, 2:end-1) + U(j-1, 2:end-1))' + dt * f(x(2:end-1), y(j), n*dt);
U(j, 2:end-1) = thomas_algorithm(a, b(2:end-1), c, d);
end
% Second half-step: Y-direction implicit, X-direction explicit
for i = 2:Nx-1
a = -alpha * dt / (2 * dy^2) * ones(Ny-1, 1);
b = (1 + alpha * dt / dy^2) * ones(Ny, 1);
c = -alpha * dt / (2 * dy^2) * ones(Ny-1, 1);
d = U(2:end-1, i) + 0.5 * alpha * dt / dx^2 * (U(2:end-1, i+1) - 2 * U(2:end-1, i) + U(2:end-1, i-1)) + dt * f(x(i), y(2:end-1), n*dt);
U(2:end-1, i) = thomas_algorithm(a, b(2:end-1), c, d);
end
U = apply_boundary_conditions(U, x, y, dy, dx);
end
% Visualization
surf(X, Y, U);
title('ADI Solution at T=' + string(T));
xlabel('X');
ylabel('Y');
zlabel('U');
colorbar;
1 Kommentar
Torsten
am 12 Mai 2024
Shouldn't your solution array be three-dimensional instead of two-dimensional ? The way you arranged the code, you only get one solution at time T - the complete history for U is overwritten.
Antworten (1)
John D'Errico
am 12 Mai 2024
You say it works for sufficiently small values dt.
With that exp(t) term in there, do you seriously expect it to work well for large values of dt? I have dreams myself somedays...
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differentiation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!