Your matrix is 4x5. How do you want to define a determinant for it ?
How to add unknow parameter in matrix and solve it by use det() syntax for finding w
7 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Trong Nhan Tran
am 9 Mai 2024
Bearbeitet: john
am 23 Mai 2024
% under is what i did but seen it is not work for det(A) for find w
clc % clear history command and past result
syms w;
m1 = 1.8;
m2 = 6.3;
m3 = 5.4;
m4 = 22.5;
m5 = 54;
c2 = 10000;
c3 = 500;
c4 = 1500;
c5 = 1100;
k2 = 1*10^8;
k3 = 50*10^3;
k4 = 75*10^3;
k5 = 10*10^3;
% Form of matrix is Ax=b
% Where A is nxn matrix, x is displacement of lumped masses and b is RHS.
A= [0, 0, 0, 0, (m5*w^2)-k5-c5;
0, 0, k4+c4, -k4-c4+(m4*w^2)+k5+c5, -k5+c5;
k2+c2, -k3-c3-k2-c2+(m2*w^2), k3+c3, 0, 0;
-k2-c2+(m1*w^2), k2+c2, 0, 0, 0];
det (A);
2 Kommentare
Akzeptierte Antwort
Hassaan
am 9 Mai 2024
Bearbeitet: Hassaan
am 9 Mai 2024
clc; % Clear command window
clear; % Clear workspace
syms w; % Define w as a symbolic variable
% Define masses, damping coefficients, and stiffness coefficients
m1 = 1.8; m2 = 6.3; m3 = 5.4; m4 = 22.5; m5 = 54;
c2 = 10000; c3 = 500; c4 = 1500; c5 = 1100;
k2 = 1*10^8; k3 = 50*10^3; k4 = 75*10^3; k5 = 10*10^3;
% Define the matrix A
A = [k2+c2, -k2-c2+(m2*w^2), 0, 0, 0;
-k2-c2, k2+c2+k3+c3, -k3-c3, 0, 0;
0, -k3-c3, k3+c3+k4+c4, -k4-c4+(m4*w^2), 0;
0, 0, -k4-c4, k4+c4+k5+c5, -k5-c5;
0, 0, 0, -k5, k5+c5+(m5*w^2)];
% Calculate the determinant of the matrix A
detA = det(A);
% Display the determinant
disp('The determinant of matrix A is:');
disp(detA);
double(solve(detA==0,w,'MaxDegree',3))
-----------------------------------------------------------------------------------------------------------------------------------------------------
If you find the solution helpful and it resolves your issue, it would be greatly appreciated if you could accept the answer. Also, leaving an upvote and a comment are also wonderful ways to provide feedback.
It's important to note that the advice and code are based on limited information and meant for educational purposes. Users should verify and adapt the code to their specific needs, ensuring compatibility and adherence to ethical standards.
Professional Interests
- Technical Services and Consulting
- Embedded Systems | Firmware Developement | Simulations
- Electrical and Electronics Engineering
Feel free to contact me.
5 Kommentare
Sam Chak
am 10 Mai 2024
Could you explain what the symbolic variable w is?
syms w W
% Define masses, damping coefficients, and stiffness coefficients
m1 = 1.8; m2 = 6.3; m3 = 5.4; m4 = 22.5; m5 = 54;
c2 = 10000; c3 = 500; c4 = 1500; c5 = 1100;
k2 = 1*10^8; k3 = 50*10^3; k4 = 75*10^3; k5 = 10*10^3;
% Define the matrix A
A = [k2+c2, -k2-c2+(m2*w^2), 0, 0, 0;
-k2-c2, k2+c2+k3+c3, -k3-c3, 0, 0;
0, -k3-c3, k3+c3+k4+c4, -k4-c4+(m4*w^2), 0;
0, 0, -k4-c4, k4+c4+k5+c5, -k5-c5;
0, 0, 0, -k5, k5+c5+(m5*w^2)];
% Calculate the determinant of the matrix A
detA = det(A);
detA = subs(detA, w^2, W);
% Display the determinant
disp('The determinant of matrix A is:');
disp(detA);
Wsol = double(solve(detA==0, W, 'MaxDegree', 3))
Torsten
am 10 Mai 2024
I dont know why but when i use det(A) the error is Matrix must be square.
Maybe you used the 4x5 matrix you posted first.
Weitere Antworten (2)
John D'Errico
am 9 Mai 2024
Bearbeitet: John D'Errico
am 9 Mai 2024
syms w;
m1 = 1.8;
m2 = 6.3;
m3 = 5.4;
m4 = 22.5;
m5 = 54;
c2 = 10000;
c3 = 500;
c4 = 1500;
c5 = 1100;
k2 = 1*10^8;
k3 = 50*10^3;
k4 = 75*10^3;
k5 = 10*10^3;
% Form of matrix is Ax=b
% Where A is nxn matrix, x is displacement of lumped masses and b is RHS.
A = [k2+c2, -k2-c2+(m2*w^2), 0, 0, 0;
-k2-c2, k2+c2+k3+c3, -k3-c3, 0, 0;
0, -k3-c3, k3+c3+k4+c4, -k4-c4+(m4*w^2), 0;
0, 0, -k4-c4, k4+c4+k5+c5, -k5-c5;
0, 0, 0, -k5, k5+c5+(m5*w^2)];
A
Assuming that is correctly your matrix, the result will be a degree 6 polynomial.
Adet = det(A)
There can be no exact algebraic solutions fro a degree 5 or higher polynomial. But you can have numerically computed roots.
wsol = solve(Adet,maxdegree = 6)
As you can see, there were no real solutions. All solutions were purely imaginary. The real parts of those solutions are all effectively zero.
0 Kommentare
john
am 22 Mai 2024
Bearbeitet: john
am 23 Mai 2024
To add an unknown parameter in a matrix and solve it using det() syntax for an IQ brain test, replace an element with 'w.' Then, compute the determinant and solve the resulting equation for 'w.' This process allows for a more dynamic and challenging matrix calculation, enhancing the complexity of the IQ brain test.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Linear Algebra finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


