# volume calculation from the DelaunayTri(x,y,z) function

46 Ansichten (letzte 30 Tage)
Nikola Soukupová am 21 Apr. 2024 um 19:39
Kommentiert: Matt J am 22 Apr. 2024 um 0:22
I have the data in X,Y,Z format.
Then I entered a function into script:
rng default;
DT=DelaunayTri(x,y,z)
tetramesh(DT,'FaceAlpha',0.3)
The question is, how do I calculate the volume from this Delaunay Triangulation?
##### 0 Kommentare-2 ältere Kommentare anzeigen-2 ältere Kommentare ausblenden

Melden Sie sich an, um zu kommentieren.

### Akzeptierte Antwort

John D'Errico am 21 Apr. 2024 um 21:49
Bearbeitet: John D'Errico am 21 Apr. 2024 um 22:47
Its not THAT hard. You compute the volume of each simplex in the tessellation. Sum the absolute values up. (Since those simplexes may have random signs.)
As an example, I'll create a set of simplexes that lie in a rectangular box, of edge lengths [1 2 4]. So the volume would be just a little less than 8.
xyz = rand(10000,3).*[1 2 4];
Tess = delaunayTriangulation(xyz)
Tess =
delaunayTriangulation with properties: Points: [10000x3 double] ConnectivityList: [66176x4 double] Constraints: []
Now, to write a little code, probably something I should have posted online before. I've attached the DTvolume code to this response.
V = DTvolume(Tess)
V = 7.9009
The code I wrote does a little extra, to avoid numerical problems to whatever extent possible. And of course, it is fully vectorized, and even works for 2-d triangulations.
##### 0 Kommentare-2 ältere Kommentare anzeigen-2 ältere Kommentare ausblenden

Melden Sie sich an, um zu kommentieren.

### Weitere Antworten (1)

Walter Roberson am 21 Apr. 2024 um 22:52
DT = DelaunayTri(x,y,z);
[~, Volume] = convexhull(DT);
##### 1 Kommentar-1 ältere Kommentare anzeigen-1 ältere Kommentare ausblenden
Matt J am 22 Apr. 2024 um 0:22
That would work, but only for convex regions.

Melden Sie sich an, um zu kommentieren.

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by