how can I calculate my expression with double integration?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
how can I calculate my expression with double integration?
at startup, I get an error:
Operator '.*' is not supported for operands of type 'function_handle'.
Error in sw_plt2 (line 32)
s_w_func = ( sin(k_pl.*z) .* sin(k_pl.*(z-D)) ) ./ (k_pl .* sin(k_pl*D));
My code:
z = 5:0.1:100;
D = 100;
e_f = 1.88e-18;
m = 9.11e-31;
k_b = 1.38e-23;
h_bar = 1.05e-34;
ksi = 1e-9;
t = 1;
A = 2*m/h_bar^2;
k_f = sqrt(e_f / (pi * k_b * 1.2));
N_0 = 10e28;
v_f = 1.57e6;
l = 1.5e-10;
tau = l / v_f;
gamma = h_bar / (2*pi * k_b * 1.2 * tau);
E = e_f / (pi * k_b * 1.2);
norm = 2*m / h_bar^2;
k0 = (ksi/h_bar)*sqrt(2.*m.*pi.*k_b.*1.2);
coef = 1;
w_n = @(n) t*(2*n+1);
n_max = 49;
cuA = m / (pi*h_bar*N_0*tau);
w_z = zeros(size(z));
coef_K = cuA / (2*pi*ksi);
coef_w = (cuA * ksi * A) / (4*pi);
%syms e;
wt_sum = wt(1.2, 49);
k_pl = @(e) k0*sqrt( e + wt_sum); % k_+ off dim
s_w_func = ( sin(k_pl.*z) .* sin(k_pl.*(z-D)) ) ./ (k_pl .* sin(k_pl*D));
S_w = imag( @(e) integral(s_w_func), 0, E ); % off dim
K = @(e, z) k0*sqrt(e + 1i*wt_sum - coef_K * S_w);
inner_fun = 1/K .* ( cos(@(z_)integral(K, z-D, z)) ./ sin(@(z_)integral(K, 0, D)) - cot(@(z_)integral(K, 0, D)));
W_res = wt_sum - 1i*coef_w .* (@(e) integral(inner_fun, 0, E)); % off-dim, norm on pi*k_b*Tc
figure;
plot(z, W_res);
xlabel('z');
ylabel('w_res(z)');
title('График w_res(z)');
grid on;
function result = wt(t, n)
result = 0;
for i = 1:n
result = result + t * (2 * i + 1);
end
end
2 Kommentare
Dyuman Joshi
am 25 Feb. 2024
s_w_func = ( sin(k_pl.*z) .* sin(k_pl.*(z-D)) ) ./ (k_pl .* sin(k_pl*D));
What is this line of code supposed to do?
Please share the expression in mathematical form so we can provide appropriate suggestions.
Antworten (2)
Torsten
am 25 Feb. 2024
Maybe you mean this, but I'm not sure:
D = 100;
e_f = 1.88e-18;
m = 9.11e-31;
k_b = 1.38e-23;
h_bar = 1.05e-34;
ksi = 1e-9;
t = 1;
A = 2*m/h_bar^2;
k_f = sqrt(e_f / (pi * k_b * 1.2));
N_0 = 10e28;
v_f = 1.57e6;
l = 1.5e-10;
tau = l / v_f;
gamma = h_bar / (2*pi * k_b * 1.2 * tau);
E = e_f / (pi * k_b * 1.2);
norm = 2*m / h_bar^2;
k0 = (ksi/h_bar)*sqrt(2.*m.*pi.*k_b.*1.2);
coef = 1;
w_n = @(n) t*(2*n+1);
n_max = 49;
cuA = m / (pi*h_bar*N_0*tau);
coef_K = cuA / (2*pi*ksi);
coef_w = (cuA * ksi * A) / (4*pi);
wt_sum = wt(1.2, 49);
k_pl = @(e) k0*sqrt( e + wt_sum); % k_+ off dim
s_w_func = @(e,z)( sin(k_pl(e).*z) .* sin(k_pl(e).*(z-D)) ) ./ (k_pl(e) .* sin(k_pl(e)*D));
S_w = @(z) imag(integral(@(e)s_w_func(e,z), 0, E,'ArrayValued',1 )); % off dim
K = @(e, z) k0*sqrt(e + 1i*wt_sum - coef_K * S_w(z));
inner_fun = @(e,z) 1/K(e,z) .* ( cos(integral(@(z_)K(e,z_), z-D, z)) ./ sin(integral(@(z_)K(e,z_), 0, D)) - cot(integral(@(z_)K(e,z_), 0, D)));
W_res = @(z)wt_sum - 1i*coef_w .* integral(@(e)inner_fun(e,z), 0, E,'ArrayValued',1); % off-dim, norm on pi*k_b*Tc
function result = wt(t, n)
result = 0;
for i = 1:n
result = result + t * (2 * i + 1);
end
end
John D'Errico
am 25 Feb. 2024
Bearbeitet: John D'Errico
am 25 Feb. 2024
The important takeaway to use is, you CANNOT perform arithmetic operations between a pair of function handles. Maybe you think you should be able to, but you CANNOT. Yours is a common error we see by new users. Language syntax is irrefutable and inescapable.
HOWEVER, you can perform those same operations on the RESULT of a function handle. For example:
f1 = @(x) x + 1;
f2 = @(x) x.^2;
f3 = @(x) f1(x).*f2(x);
f3(5)
By way of comparison, see what happens when you try to multiply those function handles (I must do this at the end, as MATLAB in Answers will not allow me to do anything else after an error occurs.)
f1*f2
Do you see this is the same error you got? The solution is as I showed above. You need to operate on the RESULT of the function handles, not on the function handles themselves.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differentiation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!