The fastest method to perform sum of function
10 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Suppose that I have a function fun(x,y,z) whose output is a 2 by 2 matrix (one example is given below). I want to calculate the sum of this function over a 3D grid of x, y, and z. Of course I can use for() loops, but that will be very slow. What is the fastest way to perform this task? Vectorizing, but how?
clear; clc;
dx = 0.1;
dy = 0.15;
dz = 0.05;
xmin = -2;
xmax = 4;
ymin = -2*pi;
ymax = 2*pi;
zmin = -1;
zmax = 2;
xs = xmin:dx:xmax;
ys = ymin:dy:ymax;
zs = zmin:dz:zmax;
answer = sum(fun(xs,ys,zs),'All')
% answer should be a 2-by-2 matrix
function out = fun(x,y,z)
J = 1;
S = 1;
D = 0.75;
Sigma0_R = -1i*0.1*eye(2);
h0 = eye(2)*(3*J*S);
hx = [0,1; 1,0]*(-J*S*(cos(y/2 - (3^(1/2)*x)/2) + cos(y/2 + (3^(1/2)*x)/2) + cos(y)));
hy = [0, -1i; 1i, 0]*(-J*S*(sin(y/2 - (3^(1/2)*x)/2) + sin(y/2 + (3^(1/2)*x)/2) - sin(y)));
hz = [1, 0; 0, -1]*(-2*D*S*(sin(3^(1/2)*x) + sin((3*y)/2 - (3^(1/2)*x)/2) - sin((3*y)/2 + (3^(1/2)*x)/2)));
out = inv( z*eye(2) - (h0 + hx + hy + hz) - Sigma0_R );
end
5 Kommentare
Matt J
am 3 Feb. 2024
Suppose that I have a function fun(x,y,z) whose output is a 2 by 2 matrix... I want to calculate the sum of this function over a 3D grid of x, y, and z.
Does that mean the final result will also be a 2x2 matrix, or will it be a scalar representing the sum over all 2*2*Nx*Ny*Nz values?
Antworten (3)
Walter Roberson
am 2 Feb. 2024
The fastest way of adding the values depends upon the fine details of your hardware, and on the details of how the data is laid out in memory, and depends upon what else is happening on your system to determine how calculations are scheduled by the CPU.
These are not suitable topics for discussion here.
5 Kommentare
Aaron
am 2 Feb. 2024
In that case, you'd do sum(A, [3,4,5]) to just sum over the dimensions you're storing the dimensional dependence in.
Torsten
am 2 Feb. 2024
Bearbeitet: Torsten
am 2 Feb. 2024
I tried precomputing the output of your function symbolically and then evaluate it for numerical input. But it seems there is no advantage over a simple loop with the numerical function called.
I don't know of a fast way to rewrite your function so that it can deal with array inputs for x,y and z.
dx = 0.1;
dy = 0.15;
dz = 0.05;
xmin = -2;
xmax = 4;
ymin = -2*pi;
ymax = 2*pi;
zmin = -1;
zmax = 2;
xs = xmin:dx:xmax;
ys = ymin:dy:ymax;
zs = zmin:dz:zmax;
tic
% Compute result in a simple loop
s=0;
for i=1:numel(xs)
for j=1:numel(ys)
for k=1:numel(zs)
s = s+fun(xs(i),ys(j),zs(k));
end
end
end
toc
s
syms x y z
J = 1;
S = 1;
D = 0.75;
Sigma0_R = -1i*0.1*eye(2);
h0 = eye(2)*(3*J*S);
hx = [0,1; 1,0]*(-J*S*(cos(y/2 - (3^(1/2)*x)/2) + cos(y/2 + (3^(1/2)*x)/2) + cos(y)));
hy = [0, -1i; 1i, 0]*(-J*S*(sin(y/2 - (3^(1/2)*x)/2) + sin(y/2 + (3^(1/2)*x)/2) - sin(y)));
hz = [1, 0; 0, -1]*(-2*D*S*(sin(3^(1/2)*x) + sin((3*y)/2 - (3^(1/2)*x)/2) - sin((3*y)/2 + (3^(1/2)*x)/2)));
out = inv( z*eye(2) - (h0 + hx + hy + hz) - Sigma0_R )
out = matlabFunction(out)
[Xs,Ys,Zs]=meshgrid(xs,ys,zs);
% Compute result from the precomputed function
tic
answer = arrayfun(@(x,y,z)out(x,y,z),Xs(:),Ys(:),Zs(:),'UniformOutput',0);
s=sum(cat(3,answer{:}),3)
toc
function out = fun(x,y,z)
J = 1;
S = 1;
D = 0.75;
Sigma0_R = -1i*0.1*eye(2);
h0 = eye(2)*(3*J*S);
hx = [0,1; 1,0]*(-J*S*(cos(y/2 - (3^(1/2)*x)/2) + cos(y/2 + (3^(1/2)*x)/2) + cos(y)));
hy = [0, -1i; 1i, 0]*(-J*S*(sin(y/2 - (3^(1/2)*x)/2) + sin(y/2 + (3^(1/2)*x)/2) - sin(y)));
hz = [1, 0; 0, -1]*(-2*D*S*(sin(3^(1/2)*x) + sin((3*y)/2 - (3^(1/2)*x)/2) - sin((3*y)/2 + (3^(1/2)*x)/2)));
out = inv( z*eye(2) - (h0 + hx + hy + hz) - Sigma0_R );
end
0 Kommentare
Matt J
am 2 Feb. 2024
Bearbeitet: Matt J
am 3 Feb. 2024
dx = 0.1;
dy = 0.15;
dz = 0.05;
xmin = -2;
xmax = 4;
ymin = -2*pi;
ymax = 2*pi;
zmin = -1;
zmax = 2;
xs = xmin:dx:xmax;
ys = ymin:dy:ymax;
zs = zmin:dz:zmax;
tic;
answer = sum(fun(xs,ys,zs),3);
toc
function out = fun(x,y,z)
J = 1;
S = 1;
D = 0.75;
fnc=@(q) reshape(q,1,1,[]);
fn=@(q) shiftdim(q,-3);
x=x(:); y=y(:).'; z=fnc(z);
Sigma0_R = -1i*0.1*eye(2);
h0 = eye(2)*(3*J*S);
hx = [0,1; 1,0].*fn((-J.*S.*(cos(y./2 - (3.^(1./2).*x)./2) + cos(y./2 + (3.^(1./2).*x)./2) + cos(y))));
hy = [0, -1i; 1i, 0].*fn((-J.*S.*(sin(y./2 - (3.^(1./2).*x)./2) + sin(y./2 + (3.^(1./2).*x)./2) - sin(y))));
hz = [1, 0; 0, -1].*fn((-2.*D.*S.*(sin(3.^(1./2).*x) + sin((3.*y)./2 - (3.^(1./2).*x)./2) - sin((3.*y)./2 + (3.^(1./2).*x)./2))));
tmp=fn(z);
out = inv2( reshape( tmp.*eye(2) - (h0 + hx + hy + hz) - Sigma0_R ,2,2,[]));
end
function X=inv2(A)
%Inverts 2x2xN matrix stack A.
%Based on FEX contribution
%https://www.mathworks.com/matlabcentral/fileexchange/27762-small-size-linear-solver?s_tid=srchtitle
%by Bruno Luong
A = reshape(A, 4, []).';
X = [A(:,4) -A(:,2) -A(:,3) A(:,1)];
% Determinant
D = A(:,1).*A(:,4) - A(:,2).*A(:,3);
X = X./D;
X = reshape(X.', 2, 2, []);
end
0 Kommentare
Siehe auch
Kategorien
Mehr zu Sparse Matrices finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!