I want to get a scaled vector field $\vec F=(x^2-x)i+(y^2-y)j$. The Fig should be like the attached Fig:
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Atom
am 25 Dez. 2023
Beantwortet: Sulaymon Eshkabilov
am 25 Dez. 2023
I want to get a scaled vector field $\vec F=(x^2-x)i+(y^2-y)j$. The Fig should be like the attached Fig:
[x,y] = meshgrid(-2:.16:2,-2:.16:2);
Fx = (x.*x-x);
Fy=y.*y-y;
figure;
quiver(x,y,Fx,Fy,'k','linewidth',1.2)
hold on
x=-2:0.01:2;
y=1-x;
plot(x,y,'k','linewidth',2);
Note that we have $div \vec F>0$ for $x+y>1$, $div \vec F<0$ for $x+y<1$ and $div \vec F=0$ on the line $x+y=1$ .
3 Kommentare
Dyuman Joshi
am 25 Dez. 2023
What is the vector field scaled to?
The arrows of the vector field in the reference image appear to be of the same length.
Akzeptierte Antwort
Sulaymon Eshkabilov
am 25 Dez. 2023
Is this what you are trying to obtain:
[x, y] = meshgrid(-2:0.25:2); % x and y values
F_x = 1*(x.^2 - x); % The vector field of x
F_y = 1*(y.^2 - y); % The vector field of y
F = F_x+F_y;
% Normalize the vectors
magnitude = sqrt(F_x.^2 + F_y.^2);
F_x_Nor = F_x ./ magnitude;
F_y_Nor = F_y ./ magnitude;
% Plot the scaled vector field
quiver(x, y, F_x_Nor, F_y_Nor);
hold on
X=-2:0.1:2;
Y=1-X;
plot(X,Y,'k','linewidth',2);
xlabel('x');
ylabel('y');
title('Scaled Vector Field: F = (x^2 - x) + (y^2 - y)');
axis([-2 2 -2 2])
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Polynomials finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!