very similar dataset and yet 'TRAPZ' function gives very different answers
    4 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
    Kareemulla Dudekula
 am 17 Aug. 2023
  
    
    
    
    
    Bearbeitet: John D'Errico
      
      
 am 17 Aug. 2023
            Dear All,
I am kind of struggling to figure out why two sets of data - quantitatively very similar - gives very different answers when numerically integrated uisng 'TRAPZ' funciton; data is attached in the .xls document.
Any insights in this regard are highly appreciated!
Thanks in advance!
Regards,
KD
0 Kommentare
Akzeptierte Antwort
  John D'Errico
      
      
 am 17 Aug. 2023
        
      Bearbeitet: John D'Errico
      
      
 am 17 Aug. 2023
  
      "Very" different? "VERY"? Lets be serious.
xy1 = [1.43155281315397	0.00255865851191916
1.35675838019809	0.0145131910703132
1.27925136527898	0.063166446949049
1.19895069245412	0.210990679450789
1.1157710244529	0.540955972655767
1.02962188546981	1.06472307447546
0.940406331363923	1.60888586350091
0.848018802346465	1.86658100394464
0.752341384965735	1.66264882670706
0.653236684654374	1.13700864870653
0.550532598338051	0.596885427112396
0.443984551996628	0.240497869152622
0.333159864072945	0.0743572051584443
0.216939570864193	0.0176351499842711
0.0888515203255917	0.00320643723615615];
a1 = trapz(flip(xy1(:,1)),flip(xy1(:,2)))
xy2 = [1.3574514696438	0.00230062694421278
1.29605548980418	0.0132435702443471
1.23099970732201	0.0584912051989921
1.16214843460327	0.198236594379449
1.08935954807805	0.51564908418259
1.01248347607602	1.02957271312853
0.931361701492302	1.57808683823824
0.84582439298594	1.85693323865362
0.75568634779567	1.67746620095548
0.660739348290927	1.16327656092461
0.560735966899023	0.619215364238612
0.455349613170889	0.252967924578314
0.344052551344047	0.0792989196684651
0.22559115331588	0.0190697822153908
0.0930728988402219	0.00351835370743469];
a2 = trapz(flip(xy2(:,1)),flip(xy2(:,2)))
The difference is roughly 6.5%
100*(a1 - a2)/a1
plot(xy1(:,1),xy1(:,2),'r-',xy2(:,1),xy2(:,2),'b-')
So around 6.5% difference in area. Why should that surprise you? This has nothing to do with the use of trapz. The two have a different area, and trapz tells you that.
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
				Mehr zu Numerical Integration and Differentiation finden Sie in Help Center und File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


