program takes long time to run
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
I have a code below,which takes long time to run,can u tell how to process please....
Gout is my input which contains 990 rows and 4 colomns of data(990*4)
Ng=Gout
hidden_neurons =6;
epochs = 100;
wait_l = epochs*Nf;
wait_i = 0;
%h = waitbar(0,'Training Neural Network');
for i = 1:Nf
st = (i-1)*round(size(Traindata,1)/Nf)+1;
en = i*round(size(Traindata,1)/Nf);
if en>size(Traindata,1)
en=size(Traindata,1);
end
train_inp = [Traindata(1:st-1,:);Traindata(en+1:end,:)];
train_out = [Trainlabel(1:st-1,:);Trainlabel(en+1:end,:)];
test_inp = Traindata(st:en,:);
[Predicted,wait_i] = Neural1(hidden_neurons, epochs, train_inp, train_out, test_inp, wait_l, wait_i);
Training_error_NN(i,:) = sum(abs(Predicted-Trainlabel(st:en,:)));
Training_acc_NN(i,:) = accuracy(Predicted,Trainlabel(st:en,:));
end
% close(h);
pause(1);
%wait_i = 0;
%h = waitbar(0,'Testing Neural Network');
for i = 1:Nf
st = (i-1)*round(size(Testdata,1)/Nf)+1;
en = i*round(size(Testdata,1)/Nf);
if en>size(Testdata,1)
en=size(Testdata,1);
end
train_inp = Traindata;
train_out = Trainlabel;
test_inp = Testdata(st:en,:);
[Predicted,wait_i] = Neural1(hidden_neurons, epochs, train_inp, train_out, test_inp, wait_l, wait_i);
Testing_error_NN(i) = sum(abs(Predicted-Testlabel(st:en,:)));
Testing_acc_NN(i) = accuracy(Predicted,Testlabel(st:en,:));
(Testing_acc_NN')
(Testing_error_NN')
result=[fc1 Testing_acc_NN' Testing_error_NN']
end
% close(h);
pause(1);
2 Kommentare
Akzeptierte Antwort
Robert Cumming
am 1 Nov. 2011
you have 2 "pause" commands in the code - any idea how many times they are called?
Have you used the profiler?
profile on % then run your code
profile viewer
That will show you were your code is taking the most time.
0 Kommentare
Weitere Antworten (1)
Lulu
am 1 Nov. 2011
If Nf is large, then try to vectorize FOR loop.
1 Kommentar
Jan
am 1 Nov. 2011
I wouldn't do this. The creation of large temporary arrays is usually more time-consuming than the accleration by the vectorization. The vectorization is helpful, if the data are available as arrays already.
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!