program takes long time to run

1 Ansicht (letzte 30 Tage)
FIR
FIR am 1 Nov. 2011
I have a code below,which takes long time to run,can u tell how to process please....
Gout is my input which contains 990 rows and 4 colomns of data(990*4)
Ng=Gout
hidden_neurons =6;
epochs = 100;
wait_l = epochs*Nf;
wait_i = 0;
%h = waitbar(0,'Training Neural Network');
for i = 1:Nf
st = (i-1)*round(size(Traindata,1)/Nf)+1;
en = i*round(size(Traindata,1)/Nf);
if en>size(Traindata,1)
en=size(Traindata,1);
end
train_inp = [Traindata(1:st-1,:);Traindata(en+1:end,:)];
train_out = [Trainlabel(1:st-1,:);Trainlabel(en+1:end,:)];
test_inp = Traindata(st:en,:);
[Predicted,wait_i] = Neural1(hidden_neurons, epochs, train_inp, train_out, test_inp, wait_l, wait_i);
Training_error_NN(i,:) = sum(abs(Predicted-Trainlabel(st:en,:)));
Training_acc_NN(i,:) = accuracy(Predicted,Trainlabel(st:en,:));
end
% close(h);
pause(1);
%wait_i = 0;
%h = waitbar(0,'Testing Neural Network');
for i = 1:Nf
st = (i-1)*round(size(Testdata,1)/Nf)+1;
en = i*round(size(Testdata,1)/Nf);
if en>size(Testdata,1)
en=size(Testdata,1);
end
train_inp = Traindata;
train_out = Trainlabel;
test_inp = Testdata(st:en,:);
[Predicted,wait_i] = Neural1(hidden_neurons, epochs, train_inp, train_out, test_inp, wait_l, wait_i);
Testing_error_NN(i) = sum(abs(Predicted-Testlabel(st:en,:)));
Testing_acc_NN(i) = accuracy(Predicted,Testlabel(st:en,:));
(Testing_acc_NN')
(Testing_error_NN')
result=[fc1 Testing_acc_NN' Testing_error_NN']
end
% close(h);
pause(1);
  2 Kommentare
Naz
Naz am 1 Nov. 2011
It takes long time to read too
FIR
FIR am 1 Nov. 2011
Naz provide some suggestion

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Robert Cumming
Robert Cumming am 1 Nov. 2011
you have 2 "pause" commands in the code - any idea how many times they are called?
Have you used the profiler?
profile on % then run your code
profile viewer
That will show you were your code is taking the most time.

Weitere Antworten (1)

Lulu
Lulu am 1 Nov. 2011
If Nf is large, then try to vectorize FOR loop.
  1 Kommentar
Jan
Jan am 1 Nov. 2011
I wouldn't do this. The creation of large temporary arrays is usually more time-consuming than the accleration by the vectorization. The vectorization is helpful, if the data are available as arrays already.

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Just for fun finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by