Optimization using Cell Arrays
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello,
I'v been trying to optimize the existing code below. This calculation is done one at a time for 336000 of c1, r1, and slope.
Rinter = zeros(1080,1);
for r = 1:1080
Rinter(r) = c1 + (r-r1) / slope;
end
I redid the variables c1,r1,slope to be calculated all at once using cellfun. So now I have r1,c1,slope = 336 cell arrays with each cell holds 1000 values. I'm trying to figure out how to optimize the code so that:
Rinter = zeros(1080,1);
for r = 1:1080
Rinter(r) = c1{1:336,1}(1:1000) + (r-r1{1:336,1}(1:1000)) / slope{1:336}(1:1000);
end
any help is appreciated since I'm rather confused now. Thanks!
5 Kommentare
Torsten
am 12 Jul. 2023
Bearbeitet: Torsten
am 12 Jul. 2023
I don't understand your example. Since r is a scalar in your equation
Rinter(r) = c1{1:336,1}(1:1000) + (r-r1{1:336,1}(1:1000)) / slope{1:336}(1:1000);
shouldn't the components of the vector R = r*[1; 1; 1] be the same ?
r1{1,1} = ...
[538.066700563257
539.176467549361
537.641860711957];
c1{1,1} = ...
[145.906518570733
146.998492549802
145.488490220006];
slope{1,1} = ...
[-0.980866192253173
-0.989057988958667
-0.982385707846712];
Rinter{1,1} = ...
[693.449807150745
692.430300098817
691.410793046889];
R = (Rinter{1,1}-c1{1,1}).*slope{1,1}+r1{1,1}
Antworten (1)
Image Analyst
am 12 Jul. 2023
Just use a normal double array. Cell arrays are slow and very inefficient and are a special type of variable for situations where every element (cell) might have a different type or different number of elements in each cell. See the FAQ:
Since that does not apply in your situation, a normal double array would be the best, fastest, and most efficient approach.
3 Kommentare
Rik
am 13 Jul. 2023
You should use timeit when dealing with code that takes less than a second. You should also properly preallocate the output arrays.
r2l = zeros(1,336);
c2l = zeros(1,336);
for i = 1:336
[r2l(i),c2l(i)] = RPD(r2(i),c2(i),angle);
end
Siehe auch
Kategorien
Mehr zu Loops and Conditional Statements finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!