How to plot a surface curve with inequalities?
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Aditya Zade
am 30 Mai 2023
Kommentiert: Aditya Zade
am 30 Mai 2023
M = 0.85 : 1/200 : 1 ;
Psi = 0 : 1/200 : 30 ;
dp = 0.6 : 1/200 : 1 ;
[ X, Y, Z ] = meshgrid( dp, Psi, M ) ;
ineq = ( X > 1 - ( 4 * Y / 360 ) ) & ( X > (2/pi)*asin(Z/2) ) & ( X < (2/pi)*asin(Z) ) ;
0 Kommentare
Akzeptierte Antwort
Sulaymon Eshkabilov
am 30 Mai 2023
Note that 1st of all, in order to compare X vs. Y vs. Z, their size "MUST" match. Therefore, to make their size compatible, e.g. 200.
Here is one of the possible solutions of this exercise:
N = 200;
M = linspace(0.85 ,1, N) ;
Psi = linspace(0,30, N) ;
dp = linspace(0.6,1, N) ;
[ X, Y] = meshgrid(dp, Psi) ;
[~, ZZ] = meshgrid(M, M);
IND = ( X > 1 - ( 4 * Y / 360 )) & ( X > (2/pi)*asin(ZZ/2) ) & ( X < (2/pi)*asin(ZZ)) ;
Xs = X.*(IND);
Ys = Y.*(IND);
Zs = ZZ.*(IND);
meshc(Xs, Ys, Zs)
xlabel('dp')
ylabel('psi')
zlabel('M')
Check your specified inequality conditions whether they are correct or not.
Weitere Antworten (1)
John D'Errico
am 30 Mai 2023
Bearbeitet: John D'Errico
am 30 Mai 2023
And exactly what is the problem? I think what you do not understand is, what you have created is NOT a surface.
M = 0.85 : 1/200 : 1 ;
Psi = 0 : 1/200 : 30 ;
dp = 0.6 : 1/200 : 1 ;
[ X, Y, Z ] = meshgrid( dp, Psi, M ) ;
ineq = ( X > 1 - ( 4 * Y / 360 ) ) & ( X > (2/pi)*asin(Z/2) ) & ( X < (2/pi)*asin(Z) );
X(~ineq) = NaN;
Y(~ineq) = NaN;
Z(~ineq) = NaN;
plot3(X(:),Y(:),Z(:),'.')
The result is a set of points that live in a triangular region in X and Y, with one curved surface, where Z is a function of X and Y.
But there is no "surface" that you have created. You might think of what you have done is to create a volume, the set of points delineated by those constraints.
1 Kommentar
Siehe auch
Kategorien
Mehr zu Creating and Concatenating Matrices finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

