Simulink Matlab function block output is inferred as a variable-size matrix, but its size is specified as inherited or fixed
7 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Elias Niepötter
am 2 Mai 2023
Kommentiert: Elias Niepötter
am 3 Mai 2023
Hello,
I have implemented the following simulink to generate a prediction using a trained neural network.

When I try to run the model, I receive the follwong error message:
'input4NN' is inferred as a variable-size matrix, but its size is specified as inherited or fixed. Verify 'input4NN' is defined in terms of non-tunable parameters, or select the 'Variable Size' check box and specify the upper bounds in the Size box.
The preprocessing of the data in the corresponding matlab function block looks as follows:
function [enablePrediction, input4NN] = fcn(IVT_Current, IVT_Voltage, maxTemp, minVoltage, SOClast)
data = [IVT_Current IVT_Voltage maxTemp minVoltage SOClast];
persistent inputStream;
IPlength = 300;
if isempty(inputStream)
inputStream = data;
else
inputStream = [inputStream; data];
end
if size(inputStream, 1) >= IPlength
enablePrediction = true;
newestDataStream = inputStream((end-IPlength):end, :);
input4NN = [newestDataStream(:, 1); newestDataStream(:, 2); newestDataStream(:, 3); newestDataStream(:, 4); newestDataStream(:, 5)];
else
enablePrediction = false;
input4NN = zeros(1500, 1);
end
end
I have read some forum entries regarding the variable-size error, but I was able to resolve it that way.
I need an IP vector of (1500, 1) of non-variabel-size for the prediction block. So OP of the preprocessing function should also be (1500, 1). I already created a variabel "input4NN" that es stored inside the model workspace and specified the dimensions of (1500, 1) as fixed.
I'm thankful for any further ideas/help.
0 Kommentare
Akzeptierte Antwort
Fangjun Jiang
am 3 Mai 2023
There are issues with the code. The size of "inputStream" is going to grow indifinitely.
I suggest using a Buffer block to replace this MATLAB Function block.
If you don't have the Buffer block in your Simulink and its toolbox, I suggest assigning input4NN = zeros(1500, 1) at the beginning of the code. Use a counter to determine enablePredition. Assign input4NN like below
TempData = [newestDataStream(:, 1); newestDataStream(:, 2); newestDataStream(:, 3); newestDataStream(:, 4); newestDataStream(:, 5)];
input4NN(1:1500)=TempData(:);
2 Kommentare
Fangjun Jiang
am 3 Mai 2023
Or, making this one line change should resolve the "input4NN is inferred ..." error.
input4NN(1:1500) = [newestDataStream(:, 1); newestDataStream(:, 2); newestDataStream(:, 3); newestDataStream(:, 4); newestDataStream(:, 5)];
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Deep Learning with Simulink finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!