Boundary conditions in ode
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello, I have a question. It would be greatly appreciated if someone could help me out. How can I define these boundary conditions in the following code ? y'(80)=0 and y(C0)=t0.
syms y(x) x Y
N=5;
r=0.05;
m=0.01;
p=1;
s=1;
t=0.1;
a=0.25;
b=0.25;
C0=1;
C=5;
f=(x+((x^2)+4*r*x*(1-a-b))^0.5)/(2*(1-a-b));
%t1=-(N+r+t*p*s-m);
Dy = diff(y);
D2y = diff(y,2);
t0= (((1-a)/a)*(1/r)^((a+b)/(1-a-b));
ode = y-(((1-a)/a)*(1/(r+f))^((a+b)/(1-a-b))+Dy*(C-x-m-(s^2))+0.5*D2y*(x^2)*(s^2)-(s^2)*x*Dy)/(r-m);
[VF,Subs] = odeToVectorField(ode);
odefcn = matlabFunction(VF, 'Vars',{x,Y});
tspan = [C0 C];
ic = [t0 0];
[x1,y1] = ode45(odefcn, tspan, ic);
figure
plot(x1,y1(:,1), 'DisplayName','(x_1,y_1_1)')
6 Kommentare
Torsten
am 23 Apr. 2023
Bearbeitet: Torsten
am 23 Apr. 2023
It means that the second function you want to solve for (i.e. y') in the right boundary point (b) (i.e. x = 80) should be 0.
And ya(1) - t0 means that the first function you want to solve for (i.e. y) in the left boundary point (a) (i.e. x = C0) should be t0.
Here are examples to study on how to use bvp4c:
Antworten (0)
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!