Unable to perform assignment because value of type 'sym' is not convertible to 'double'.
8 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
function [U]=timerpathCALLfinite(s0,v0,sigma,kappa,K,B)%varibles
s0=100;
v0=0.001;
K=100;
T=2;
steptime=256;
dt=T/256;
B=0.001;
r=0.01;
sigma=0.25;% not larger then 0.1
kappa=0.1;
rho=0.5;
v=zeros(T*steptime);%volatility price
v(1)=v0;%initial price;
zpath(1)=(2*sqrt(v0))/sigma;
deta=(4*kappa)/(sigma^2); % Bessel process parameter
nu=deta/2-1; % bessel model index
sum(1)=0;
p(1)=0;
for j=1:steptime*T% search stopping time
v(j+1)=v0*exp((kappa-0.5*sigma^2)*(j*dt)-sigma*sqrt(j*dt)); %volatility
sum=sum+dt*((v(j)+v(j+1))/2);% cumulation volitility
if sum>=B
tau=j+1;
br=tau*dt;
break;
end
end
if sum>=B % at stopping time exercise
syms ztau R
%%insert expectation
d=sqrt((1-rho^2)*B);
vaps=-rho*(2*kappa/(sigma^2)-0.5).*(0.5*(1./ztau+1/zpath(1)).*B)+(r.*br)-(B/2)+rho.*(ztau-zpath(1));
d1=((log(s0/K)+vaps+(1-rho^2)*B))./d;
d2=d1-d;
infi=s0.*exp(vaps-r.*br).*normcdf(d1)-K.*exp(-r.*br).*normcdf(d2); %inner expectation
%%intervsion laplace transform to density
alpha=18.4/(2*B); % laplace parameter
sh=sinh(R.*sqrt(alpha./2)); % large value
pe=besseli(sqrt(alpha),2.*sqrt(2.*alpha.*zpath(1).*ztau)./sh);%bessel function
LAP=real(pe.*sqrt(2.*alpha).*(ztau.^(nu+1))./(sh.*8*(zpath(1)^(nu))).*exp(-((nu^2)*br*(sigma^2))/8-((zpath(1)+ztau).*sqrt(2*alpha).*coth(R.*sqrt(alpha/2)))));
%%% DOUBLE integral outer expectation
U=trapz(0:1,trapz(0:1,infi.*inverlap1(LAP,alpha,R,ztau,br),2));
function[disthree]=inverlap1(LAP,alpha,R,ztau,br)
v0=0.001;
B=0.001;
sigma=0.25;% not larger then 0.1
kappa=0.1;
v(1)=v0;%initial price;
zpath(1)=(2*sqrt(v0))/sigma;
deta=(4*kappa)/(sigma^2); % Bessel process parameter
nu=deta/2-1; % bessel model index
H2=LAP/2;
for t=1:1:15
alphaP=complex(alpha,(t*pi)/B);
sh1=sinh(R.*sqrt(alphaP/2));
pe1=besseli(sqrt(alpha+(t*pi)/B),2.*sqrt(2.*alphaP.*zpath(1).*ztau)./sh1);
H2=H2+((-1)^t).*real(pe1.*sqrt(2.*alphaP).*(ztau.^(nu+1))./(sh1.*8.*(zpath(1)^(nu))).*exp(-((nu^2).*br.*(sigma^2))./8-((zpath(1)+ztau).*sqrt(2.*alphaP).*coth(R.*sqrt(alphaP./2)))));
end
SU=zeros(12);
SU(1)=H2;
for I=1:12
NT=15+I;
alpha2=complex(alpha,(NT*pi)/B);
sh2=sinh(R.*sqrt(alpha2/2));
pe2=besseli(sqrt(alpha+(NT*pi)/B),2.*sqrt(2.*alpha2.*zpath(1).*ztau)./sh2);
SU(I+1)=SU(I)+((-1)^NT).*real(pe2.*sqrt(2.*alpha2).*(ztau.^(nu+1))./(sh2.*8.*(zpath(1).^(nu))).*exp(-((nu^2).*br.*(sigma^2))./8-((zpath(1)+ztau).*sqrt(2.*alpha2).*coth(R.*sqrt(alpha2./2)))));
end
AVGSU=0;
C=[1,11,55,165,330,462,462,330,165,55,11,1];
for J=1:12
AVGSU=AVGSU+C(J)*SU(J);
end
U=exp(18.4/2)/B;
disthree=(U.*AVGSU)./2048;
end
2 Kommentare
Cris LaPierre
am 15 Apr. 2023
Please share the full error message (all the red text).
Note that the code you have shared here cannot be run due to syntax errors.
Antworten (1)
Image Analyst
am 15 Apr. 2023
Are you 100% sure you need symbolic variables? Why can't you do it numerically with regular double variables? Try it.
Siehe auch
Kategorien
Mehr zu Linear Algebra finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!