Why some points do not satisfy the condition?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
The following the projected curves (thanks to all experts) which represent discontinuty of the phase of this function
p = (-0.1540 + 0.2600*1i)+ ( 0.4347 + 0.0914*1i)*z+( 0.7756 - 0.4566*1i)*z.^2;
All the points $ z=x + iy$ which lay on the projected curves must satisfy:,
when the polyval at $ z = (x + iy) $ is calculated at these points, and then we calculate
the angle (polyval $(p, z))$ it must equal to $ \pi$ or $-\pi$.
My question is:
Why some points on this curve (like z=-7373-0.07482i and z=0.3726-0.2577i) do not satisfy that:
angle (polyval $(p, z))$ it must equal to $ \pi$ or $-\pi$.
I appriciate any help
0 Kommentare
Antworten (1)
John D'Errico
am 7 Apr. 2023
Bearbeitet: John D'Errico
am 7 Apr. 2023
So often this mistake is made. Are those the EXACT values of those coefficients? To me, that would seem a surprise, that they were estimated to EXACTLY 4 significant digits, when MATLAB does all of its computations in double precision, so roughly 16 significant digits. Hey. Anything is possible. Yeah, right. (There was some veiled sarcasm in there.)
Seriously, my point is, the coefficients of those curves are not exactly known. So you cannot expect an exact result from predictions made from those coefficients. And even at that, what you have is merely an approximation, a quadratic polynomial.
You need to remember these rules:
Rule 1: ALWAYS use the full coefficients, not a 4 digit approximation.
Rule 2: See rule 1.
As I said, this is a common mistake made, that you see 4 digits, so you assume that is all there is, forgetting that those lower order digits are actually important in what you must do.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Polynomials finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!