using lsqnonlin with constraints
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
joshua payne
am 6 Apr. 2023
Kommentiert: John D'Errico
am 7 Apr. 2023
clc
clear all
%read in text data
D=readmatrix('Treloar_data.xlsx');
stretch=D(1:end,1); %this is lambda
lambda=stretch;
stress=D(1:end,2); %this is stress
T_0=stress;
u=.5673; %small strain shear modulus, mu
%constrained
fun=@(x)(2*(lambda-lambda.^-2).*(x(1)+(lambda.^-1).*x(2))-T_0);
x0=[-100000,100000]; %initial guess
%constraints
% A=2*(c(1)+c(2))==u this is the constraint i want to use
lb=[0,0]
ub=[10,10]
x=lsqnonlin(fun,x0,lb,ub);
c(1)=x(1)
c(2)=x(2)
T_MR=2*(lambda-lambda.^-2).*(c(1)+(lambda.^-1).*c(2));
figure
plot(lambda, T_0,'o'), xlabel('stretch'), ylabel('stress'), title('UT')
hold on
plot(lambda, T_MR)
i want to employ a constraint that involves both constants if possible as labeled
0 Kommentare
Akzeptierte Antwort
Torsten
am 6 Apr. 2023
Bearbeitet: Torsten
am 6 Apr. 2023
% A=2*(c(1)+c(2))==u this is the constraint i want to use
Then optimize with one parameter c(1) and insert c(2) = u/2 - c(1) for the second parameter in your model function.
And if you want the solution to be in [0 10], why do you supply an initial guess of -100000 and 100000 ?
3 Kommentare
Torsten
am 7 Apr. 2023
Because of the constraint 2*(c(1)+c(2))==u, one can set lb = 0 and ub = u/2 for c(1) (note here that the lower bound for c(2) is also 0). Then I think one can proceed as suggested.
Weitere Antworten (1)
Jon
am 6 Apr. 2023
From my understanding lsqnonlin only allows for bound constraints on the components of x. For more general problems you will have to use fmincon
1 Kommentar
Siehe auch
Kategorien
Mehr zu Stress and Strain finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!