I cannot the error in the bisection method...

2 Ansichten (letzte 30 Tage)
llucia
llucia am 6 Apr. 2023
Kommentiert: llucia am 6 Apr. 2023
Hi! I am trying to detect why my code doesn´t work properly.
This is the code.
f = @(x) x^3 + 2*x^2 + 10*x - 20;
a = 0;
b = 1;
eps_f = 10e-10;
eps_x = 10e-10;
maxits = 100;
[x, n, error] = biseccion(f,a,b,eps_x, eps_f, maxits)
function [x,n,error] = biseccion(f,a,b,eps_x, eps_f, maxits);
x0 = a;
x1 = b;
n = 0;
error (1) = abs(x1-x0);
while n < maxits && (error(n+1) > eps_x || abs(f(x0)) > eps_f)
x = 0.5 * (x0 + x1);
if f(x0)*f(x) < 0
x1 = x;
else
x0 = x;
end
n = n+1;
error(n+1) = abs(x1-x0);
end
end

Akzeptierte Antwort

John D'Errico
John D'Errico am 6 Apr. 2023
Bearbeitet: John D'Errico am 6 Apr. 2023
Get used to using the dotted operators for some things. That allows MATLAB to use vectorization in tools like fplot.
f = @(x) x.^3 + 2*x.^2 + 10*x - 20;
a = 0;
b = 1;
But the big problem is in f, and your limits.
fplot(f,[a,b])
grid on
Do you see a zero crossing in that interval? I don't.
Bisection CANNOT find a root in an interval where no root exists.
If you expand the interval, you might find it works better.
fplot(f,[0,2])
grid on
yline(0,'r')
A basic rule of using MATLAB is to plot EVERYTHING. Then plot something else. Then think about what you see. Do all of this before you just run code blindly.

Weitere Antworten (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by