Slove function return empty solutions

1 Ansicht (letzte 30 Tage)
Roy
Roy am 16 Mär. 2023
Kommentiert: Walter Roberson am 24 Mär. 2023
Hello, I'm trying to solve the attached syntax, but the aolve function return empty solutions. Please help.
syms V_1 V_2 x_1 x_2 r
pi1 = (V_1) * (x_1^r/(x_1^r+x_2^r)) - x_1
pi2 = (V_2) * (x_2^r/(x_1^r+x_2^r)) - x_2
dpi1dx = diff(pi1, x_1)
dpi2dx = diff(pi2, x_2)
s = solve(dpi1dx==0, dpi2dx==0, x_1, x_2)
  2 Kommentare
Roy
Roy am 24 Mär. 2023
Please help
Walter Roberson
Walter Roberson am 24 Mär. 2023
I am very busy these days.

Melden Sie sich an, um zu kommentieren.

Antworten (2)

Walter Roberson
Walter Roberson am 16 Mär. 2023
Use dsolve for differential equations
  20 Kommentare
Walter Roberson
Walter Roberson am 21 Mär. 2023
The problem is not solveable for most r .
For example for r = 3/2 then the solutions are
RootOf(4*Z^3*x_2^(3/2) + 2*Z^6 - 3*Z*x_2^(3/2)*V_1 + 2*x_2^3,Z)^2
which is the set of Z such that the expression 4*etc becomes 0. But notice the Z^6 part -- so you would need the closed-form solution for a degree 6 polynomial, and such solutions only exist if the expression can be factored into polynomials of degree 4 or lower.
If r = N/4 for odd integer N, then you need to solve something of degree either 2*N+4 (for small N) or degree 2*N (starting at N = 5). r = 1/5 and r = 3/5 are tractable (but long!!), the other N/5 are not tractable.
Roy
Roy am 21 Mär. 2023
noway :(
this is the solution for general r and V_1 != V_2
x_1 = V_2*(r*(V_2/V_1)^(r-1))/(1+(V_2/V_1)^r)^2
x_2 = V_1*(r*(V_1/V_2)^(r-1))/(1+(V_1/V_2)^r)^2
placing x_1 and x_2 and the dpi1dx and dpi2dx become them to 0.

Melden Sie sich an, um zu kommentieren.


Roy
Roy am 21 Mär. 2023
Why MATLAB can't solve this simple equations?
the solution for general r and V_1 != V_2:
x_1 = V_2*(r*(V_2/V_1)^(r-1))/(1+(V_2/V_1)^r)^2
x_2 = V_1*(r*(V_1/V_2)^(r-1))/(1+(V_1/V_2)^r)^2
placing x_1 and x_2 and the dpi1dx and dpi2dx become them to 0.
  3 Kommentare
Walter Roberson
Walter Roberson am 22 Mär. 2023
If you add the assumption of positive then they do resolve to 0
syms V_1 V_2 x_1 x_2 r positive
pi1 = (V_1) * (x_1^r/(x_1^r+x_2^r)) - x_1
pi1 = 
pi2 = (V_2) * (x_2^r/(x_1^r+x_2^r)) - x_2
pi2 = 
dpi1dx = diff(pi1, x_1)
dpi1dx = 
dpi2dx = diff(pi2, x_2)
dpi2dx = 
simplify(subs(dpi1dx,[x_1 x_2],[V_2*(r*(V_2/V_1)^(r-1))/(1+(V_2/V_1)^r)^2,V_1*(r*(V_1/V_2)^(r-1))/(1+(V_1/V_2)^r)^2]))
ans = 
0
simplify(subs(dpi2dx,[x_1 x_2],[V_2*(r*(V_2/V_1)^(r-1))/(1+(V_2/V_1)^r)^2,V_1*(r*(V_1/V_2)^(r-1))/(1+(V_1/V_2)^r)^2]))
ans = 
0
Roy
Roy am 22 Mär. 2023
Bearbeitet: Roy am 22 Mär. 2023
So why MATLAB can't solve it, and extract these x_1 and x_2 when dpi1dx=0 and dpi2dx=0 using solve() or something else?
Btw, all the varibles are positive
There is solution for this simple equations :(
x_1 = V_2*(r*(V_2/V_1)^(r-1))/(1+(V_2/V_1)^r)^2 x_2 = V_1*(r*(V_1/V_2)^(r-1))/(1+(V_1/V_2)^r)^2

Melden Sie sich an, um zu kommentieren.

Produkte


Version

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by