Slove function return empty solutions
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello, I'm trying to solve the attached syntax, but the aolve function return empty solutions. Please help.
syms V_1 V_2 x_1 x_2 r
pi1 = (V_1) * (x_1^r/(x_1^r+x_2^r)) - x_1
pi2 = (V_2) * (x_2^r/(x_1^r+x_2^r)) - x_2
dpi1dx = diff(pi1, x_1)
dpi2dx = diff(pi2, x_2)
s = solve(dpi1dx==0, dpi2dx==0, x_1, x_2)
2 Kommentare
Antworten (2)
Walter Roberson
am 16 Mär. 2023
Use dsolve for differential equations
20 Kommentare
Walter Roberson
am 21 Mär. 2023
The problem is not solveable for most r .
For example for r = 3/2 then the solutions are
RootOf(4*Z^3*x_2^(3/2) + 2*Z^6 - 3*Z*x_2^(3/2)*V_1 + 2*x_2^3,Z)^2
which is the set of Z such that the expression 4*etc becomes 0. But notice the Z^6 part -- so you would need the closed-form solution for a degree 6 polynomial, and such solutions only exist if the expression can be factored into polynomials of degree 4 or lower.
If r = N/4 for odd integer N, then you need to solve something of degree either 2*N+4 (for small N) or degree 2*N (starting at N = 5). r = 1/5 and r = 3/5 are tractable (but long!!), the other N/5 are not tractable.
Roy
am 21 Mär. 2023
3 Kommentare
Walter Roberson
am 22 Mär. 2023
If you add the assumption of positive then they do resolve to 0
syms V_1 V_2 x_1 x_2 r positive
pi1 = (V_1) * (x_1^r/(x_1^r+x_2^r)) - x_1
pi2 = (V_2) * (x_2^r/(x_1^r+x_2^r)) - x_2
dpi1dx = diff(pi1, x_1)
dpi2dx = diff(pi2, x_2)
simplify(subs(dpi1dx,[x_1 x_2],[V_2*(r*(V_2/V_1)^(r-1))/(1+(V_2/V_1)^r)^2,V_1*(r*(V_1/V_2)^(r-1))/(1+(V_1/V_2)^r)^2]))
simplify(subs(dpi2dx,[x_1 x_2],[V_2*(r*(V_2/V_1)^(r-1))/(1+(V_2/V_1)^r)^2,V_1*(r*(V_1/V_2)^(r-1))/(1+(V_1/V_2)^r)^2]))
Siehe auch
Kategorien
Mehr zu Equation Solving finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!