Foucault Pendulum
14 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Eric
am 25 Okt. 2011
Bearbeitet: arnold ing
am 21 Jan. 2018
I am inexperienced with matlab and have not used the ODE command before. I am trying write a code for the Foucault pendulum. I know there are example on the interent but they are not too helpful.
Here are my two differential equations and initial conditions
ddot(x) + (Omega^2)*x - 2*P*dot(y) = 0
ddot(y) - (Omega^2)*x - 2*P*dot(y) = 0
g = 9.81; % acceleration of gravity (m/sec^2)
l = 60; % pendulum length (m)
b = .2;
initial_x = .2; % initial x coordinate (m)
initial_y = b/2; % initial y coordinate (m)
initial_xdot = 0; % initial x velocity (m/sec)
initial_ydot = 0; % initial y velocity (m/sec)
Omega=2*pi/86400; % Earth's angular velocity of rotation about its axis (rad/sec)
lambda=0/180*pi; % (0, 30, 60, 90)latitude in (rad)
P=Omega*sin(lambda)
C=(g/l)^2;
0 Kommentare
Akzeptierte Antwort
Grzegorz Knor
am 25 Okt. 2011
First of all you have to reduce the order of an ODEs:
Next write fuction that describes the problem:
function dy = focaultPendulum(t,y)
% define your constants
dy = zeros(4,1);
dy(1) = y(2);
dy(2) = ... % your equation
dy(3) = y(4);
dy(4) = ... % your equation
And solve and plot:
[T,Y] = ode45(@focaultPendulum,tspan,initial_values);
plot(T,Y(:,1),T,Y(:,3))
Weitere Antworten (2)
Grzegorz Knor
am 26 Okt. 2011
You have to rewrite your equations:
x'' + C*x - 2*P*y' = 0
y'' + C*y + 2*P*x' = 0
to form:
u = y' --> u' = y''
v = x' --> v' = x''
v' + C*x - 2Pu = 0
u' + C*y + 2Pv = 0
assume:
x(1) = x
x(2) = y
x(3) = u
x(4) = v
then:
function xprime = odetest(t,x)
% define P & C
xprime(1) = x(4);
xprime(2) = x(3);
xprime(3) = -2*P*x(4) - C^2*x(2);
xprime(4) = 2*P*x(3) - C^2*x(1);
xprime = xprime(:);
2 Kommentare
arnold ing
am 21 Jan. 2018
Bearbeitet: arnold ing
am 21 Jan. 2018
Can anyone help me with euler forward to solve foucault pendulum ODEs. i got an error calling the function E=euler_2(@edf1,@edff2,0,30,5/10,0,100)
function dy=edf2(z)
dy = zeros(4,1);
dy(2) = z(4);
dy(4) = -1.4580e-04*sin(pi/4)*z(2) - 0.9085*z(3);
end
function dy=edf1(z)
dy = zeros(4,1);
dy(1) = z(3);
dy(3) = 1.4580e-04*sin(pi/4)*z(4) - 0.9085*z(1);
end
function E=euler_2(f1,f2,x0,b,y01,y02,N)
% euler frw
% in [x0,b]
% step size h=(b-x0)/N
h=(b-x0)/N;
X=zeros(1,N+1);
Y1=zeros(1,N+1);
Y2=zeros(1,N+1);
X=(x0:h:b); % Rrjeti i pikave xi+1-xi=h
Y1(1)=y01; % Kushti fillestar y1(x0)=y01
Y2(1)=y02; % Kushti fillestar y2(x0)=y02
for i=1:N
Y1(i+1)=Y1(i)+h*feval(f1,X(i),Y1(i),Y2(i));
Y2(i+1)=Y2(i)+h*feval(f2,X(i),Y1(i),Y2(i));
end
E=[X' Y1' Y2'];
plot(X,Y1,'*',X,Y2,'o')
end
0 Kommentare
Siehe auch
Kategorien
Mehr zu Equation Solving finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!