Find the curvature of the curve traced out by the function r(t)=〈 t^2, 5t-1, 2t^3 -t 〉 at t=1.

5 Ansichten (letzte 30 Tage)
syms t
f = t^2;
g = (5*t) - 1;
h = 2*t^3 - t;
r = [f, g, h]; % r(t)
dr = diff(r, t); % r'(t) = tangent to the curve
T = dr / norm(dr); % normalized r'(t) = T(t) = unit tangent to the curve
dT = diff(T, t); % T'(t)
k = norm(dT)/norm(dr); % Curvature at a given t ( k = ||T'(t)|| / ||r'(t)|| )
k = subs(k, 1); % Curvature at t = 1
can someone help me correct my code
my code is getting correct numbers but i need to incllude A,B, K and define R
  3 Kommentare
mnera almansoorie
mnera almansoorie am 18 Feb. 2023
Verschoben: Walter Roberson am 18 Feb. 2023
R is the r(t) K is the formula A derivative B derivative
It's a Mathlab assignment and I keep getting 20/100 so I don't know what's wrong
Torsten
Torsten am 18 Feb. 2023
The formula I know to calculate curvature of a parametric curve differs from the one you use.
Look up the section "Space curves: General expressions" under

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Amal Raj
Amal Raj am 14 Mär. 2023
Hi,
Here is the corrected code:
syms t
f = t^2;
g = (5*t) - 1;
h = 2*t^3 - t;
r = [f, g, h]; % r(t)
dr = diff(r, t); % r'(t) = tangent to the curve
T = dr / norm(dr); % normalized r'(t) = T(t) = unit tangent to the curve
dT = diff(T, t); % T'(t)
k = norm(dT)/norm(dr); % Curvature at a given t ( k = ||T'(t)|| / ||r'(t)|| )
k = subs(k, 1); % Curvature at t = 1
N = dT / norm(dT); % normal vector N(t) = (T'(t)) / (||T'(t)||)
B = cross(T, N); % binormal vector B(t) = cross(T(t), N(t))
r1 = subs(r, t, 1); % r(1)
N1 = subs(N, t, 1); % N(1)
B1 = subs(B, t, 1); % B(1)
syms A B
R = r1 + A*N1 + B*B1 % osculating circle at t = 1
% Now we need to find A and B that satisfy the condition R(1) = r(1) and R'(1) = T(1)
eq1 = R == r1;
eq2 = diff(R, t) == T;
[A, B] = solve(eq1, eq2, A, B);
% Finally, we can evaluate R, A, and B at t = 1
R = subs(R, [A, B], [A, B]);
A = double(A)
B = double(B)
K = 1 / norm(R - r1)

Kategorien

Mehr zu Particle & Nuclear Physics finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by