Find the curvature of the curve traced out by the function r(t)=〈 t^2, 5t-1, 2t^3 -t 〉 at t=1.
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
syms t
f = t^2;
g = (5*t) - 1;
h = 2*t^3 - t;
r = [f, g, h]; % r(t)
dr = diff(r, t); % r'(t) = tangent to the curve
T = dr / norm(dr); % normalized r'(t) = T(t) = unit tangent to the curve
dT = diff(T, t); % T'(t)
k = norm(dT)/norm(dr); % Curvature at a given t ( k = ||T'(t)|| / ||r'(t)|| )
k = subs(k, 1); % Curvature at t = 1
can someone help me correct my code
my code is getting correct numbers but i need to incllude A,B, K and define R
3 Kommentare
Torsten
am 18 Feb. 2023
The formula I know to calculate curvature of a parametric curve differs from the one you use.
Look up the section "Space curves: General expressions" under
Antworten (1)
Amal Raj
am 14 Mär. 2023
Hi,
Here is the corrected code:
syms t
f = t^2;
g = (5*t) - 1;
h = 2*t^3 - t;
r = [f, g, h]; % r(t)
dr = diff(r, t); % r'(t) = tangent to the curve
T = dr / norm(dr); % normalized r'(t) = T(t) = unit tangent to the curve
dT = diff(T, t); % T'(t)
k = norm(dT)/norm(dr); % Curvature at a given t ( k = ||T'(t)|| / ||r'(t)|| )
k = subs(k, 1); % Curvature at t = 1
N = dT / norm(dT); % normal vector N(t) = (T'(t)) / (||T'(t)||)
B = cross(T, N); % binormal vector B(t) = cross(T(t), N(t))
r1 = subs(r, t, 1); % r(1)
N1 = subs(N, t, 1); % N(1)
B1 = subs(B, t, 1); % B(1)
syms A B
R = r1 + A*N1 + B*B1 % osculating circle at t = 1
% Now we need to find A and B that satisfy the condition R(1) = r(1) and R'(1) = T(1)
eq1 = R == r1;
eq2 = diff(R, t) == T;
[A, B] = solve(eq1, eq2, A, B);
% Finally, we can evaluate R, A, and B at t = 1
R = subs(R, [A, B], [A, B]);
A = double(A)
B = double(B)
K = 1 / norm(R - r1)
0 Kommentare
Siehe auch
Kategorien
Mehr zu Get Started with Curve Fitting Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!