Please help me. I want to integrate the following function from 0 to plus infinity.
36 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
syms r r0 sg g(r)=r*exp(-(log(r)-log(r0))^2/(2*sg^2));
6 Kommentare
Torsten
am 2 Feb. 2023
Bearbeitet: Torsten
am 2 Feb. 2023
As you can see under
integral_{r=0}^{r=Inf} r^n * 1/(r*sqrt(2*pi*sigma^2)) * exp(-1/2 * (log(r)-mu)^2 / sigma^2) dr
=
exp( n*mu + 1/2 * n^2*sigma^2)
Both of your two integrals in question follow from this relation for n=2 and n=3.
So your integral becomes
integral_{r=0}^{r=Inf} r^(n-1) * exp(-1/2 * (log(r)-log(r0))^2 / sg^2) dr =
sqrt(2*pi*sg^2) * exp( n*log(r0) + 1/2 * n^2*sg^2)
for n = 2: sqrt(2*pi*sg^2) * r0^2* exp( 2*sg^2)
for n = 3: sqrt(2*pi*sg^2) * r0^3* exp( 4.5*sg^2)
Antworten (1)
Dr. JANAK TRIVEDI
am 2 Feb. 2023
Bearbeitet: Torsten
am 2 Feb. 2023
syms r r0 sg
g(r) = r * exp(-(log(r) - log(r0))^2 / (2 * sg^2));
int_g = int(g,r,0,inf)
Note that the inf keyword represents infinity. The integral of g(r) is calculated over the interval [0,inf). You can also specify other intervals of integration as needed.
1 Kommentar
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!