how can I find the surface area and the volume through this code?
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
v =[2;0;1;9;0;1;3;0;1];
m = max(v);
n = mean(v);
syms x;
f= @(x)(3+sin(m*x)+cos(n*x));
ezplot(f,[-pi,pi]);
dfx(x)= diff(f(x)); dfx(x)
A=2*pi*int(f*sqrt(1+dfx^2),-2*pi,2*pi);
An = double(A);
V=pi*int((3+sin(n*x))^2,-2*pi,2*pi);
Vn=double(V);
0 Kommentare
Antworten (2)
Carlos Guerrero García
am 22 Nov. 2022
The surface which area (and volume) is found, can be visualized using the following code:
v =[2;0;1;9;0;1;3;0;1]; % Line in the question
m = max(v); % Line in the question
n = mean(v); % Line in the question
[x,t]=meshgrid(-2*pi:pi/72:2*pi,0:pi/72:2*pi); % Adding the 't' variable for the rotation
y=3+sin(m*x)+cos(n*x); % The function (in the question) to be rotated
surf(x,y.*cos(t),y.*sin(t)) % The surface generated in the rotation
0 Kommentare
Torsten
am 14 Nov. 2022
v =[2;0;1;9;0;1;3;0;1];
m = max(v);
n = mean(v);
f = @(x)(3+sin(m*x)+cos(n*x));
x = -2*pi:0.01:2*pi;
plot(x,f(x))
df = @(x)m*cos(m*x)-n*sin(n*x);
A = 2*pi*integral(@(x)f(x).*sqrt(1+df(x).^2),-2*pi,2*pi)
V = pi*integral(@(x)f(x).^2,-2*pi,2*pi)
0 Kommentare
Siehe auch
Kategorien
Mehr zu Surface and Mesh Plots finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

