# Find the set of eigenvectors of a 4x4 matrix elements whose matrix elements have some VARIABLE PARAMETERS.

28 Ansichten (letzte 30 Tage)
Muhsin am 11 Nov. 2022
Bearbeitet: Torsten am 12 Nov. 2022
Below is how I defined the matrix. It is a 4x4 matrix with variables B and N on the off diagonal. Since each of these variable takes certain values in a given range, my goal is to read and display the eigenvectors for each of the values in the range of the variables.
delta=45;
%create a 4x4 zeros matrix
mat=zeros(4,4);
%set values for corresponding entries of the matrix
mat(1,1)= delta;
mat(1,2)= 0 ;
mat(1,3)=0;
mat(2,1)=0 ;
mat(2,2)= delta;
mat(2,4)=0;
mat(3,1)=0;
mat(3,3)= -delta;
mat(3,4)= 0 ;
mat(4,2)=0;
mat(4,3)=0 ;
mat(4,4)= -delta;
%define the off diagonal elements of the matrix
for N = 0:1:5
for B = 0:0.001:10
mat(1,4)=sqrt(750*B*N);
mat(2,3)=sqrt(750*B*N);
mat(3,2)=sqrt(750*B*N);
mat(4,1)=sqrt(750*B*N);
end
end
##### 2 Kommentare1 älteren Kommentar anzeigen1 älteren Kommentar ausblenden
Muhsin am 11 Nov. 2022
I realized I could edit the original question after I did it.

Melden Sie sich an, um zu kommentieren.

### Antworten (3)

Jon am 11 Nov. 2022
If I understand what you are trying to do I think this should do what you want.
The resulting values of the eigenvector for each value of the parameter B*N will be stored in the columns of matrix V
delta=45;
%set values for corresponding diagonal entries of the matrix
mat = diag([delta,delta,-delta,-delta]);
% define vectors of variable parameters
N = 0:1:5;
B = 0:0.001:10;
% matrix is parameterized by product B*N, so just compute for unique
% values of this parameter
BN = unique(N'*B);
%define the off diagonal elements of the matrix and compute the
%eigenvectors
numParam = numel(BN); % number of parameter values to be evaluated
V = zeros(4,numParam); % preallocate array to hold eigenvectors
for k = 1:numParam
a = sqrt(750*BN(k));
mat(1,4)=a;
mat(2,3)=a;
mat(3,2)=a;
mat(4,1)=a;
V(:,k) = eig(mat);
end
##### 3 Kommentare2 ältere Kommentare anzeigen2 ältere Kommentare ausblenden
Muhsin am 11 Nov. 2022
Thanks.
[V(:,:,k),~] = eig(mat); is a significant improvement. It, returns a set of eigenvectors but they are the same eigenvectors repeated. Some of the values of the eigenvectors are controlled by B*N, hence the eigenvectors shouldn't be exactly the same.

Melden Sie sich an, um zu kommentieren.

Torsten am 11 Nov. 2022
Bearbeitet: Torsten am 12 Nov. 2022
I set a = sqrt(750*B*N) in the below code. So for every combination of B and N, it gives you the eigenvalues (diagonal of D) and eigenvectors (columns of V) of your matrix "mat".
syms delta a real
mat = delta*sym(eye(4));
mat(3,3) = -mat(3,3);
mat(4,4) = -mat(4,4);
mat(1,4) = a;
mat(4,1) = a;
mat(3,2) = a;
mat(2,3) = a;
[V,D] = eig(mat)
V = D = simplify(mat*V-V*D)
ans = ##### 4 Kommentare3 ältere Kommentare anzeigen3 ältere Kommentare ausblenden
Torsten am 12 Nov. 2022
Bearbeitet: Torsten am 12 Nov. 2022
mat = diag([delta,delta,delta,delta]);
mat = diag([delta,delta,-delta,-delta]);
But nevertheless, after incorporating the changes in the symbolic computation (see above), the results are still easy to implement for the numerical case.

Melden Sie sich an, um zu kommentieren.

Walter Roberson am 11 Nov. 2022
##### 0 Kommentare-1 ältere Kommentare anzeigen-1 ältere Kommentare ausblenden

Melden Sie sich an, um zu kommentieren.

### Kategorien

Find more on Linear Algebra in Help Center and File Exchange

R2022b

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!