Computing a differential equation using a bessel function.

10 Ansichten (letzte 30 Tage)
Howie
Howie am 23 Okt. 2022
Kommentiert: Howie am 23 Okt. 2022
How do we use the bessel function of :
y = besselj(0,x)
to compute the differntial equation of ?
  1 Kommentar
John D'Errico
John D'Errico am 23 Okt. 2022
Please dont ask exactly the same question again, just to get yet more information. I closed your first question.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Torsten
Torsten am 23 Okt. 2022
Bearbeitet: Torsten am 23 Okt. 2022
The solution y of this differential equation is a combination of J_0(x) and Y_0(x), the Bessel function of the first and second kind of order 0.
So using it to solve the differential equation makes no sense.
syms x y(x)
eqn = diff(y,x,2)*x^2 + diff(y,x)*x + x^2*y == 0;
Dy = diff(y,x);
conds = [y(0)==1,Dy(0)==0];
sol = dsolve(eqn,conds);
hold on
fplot(sol,[0 100])
x = 0:0.1:100;
plot(x,besselj(0,x))
hold off
  7 Kommentare
Torsten
Torsten am 23 Okt. 2022
Bearbeitet: Torsten am 23 Okt. 2022
Done.
But now it's enough about Bessel, isn't it ?
Howie
Howie am 23 Okt. 2022
Yes thank you so much!

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Bessel functions finden Sie in Help Center und File Exchange

Produkte


Version

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by