Error in interp2 (interpolation) command.

10 Ansichten (letzte 30 Tage)
Ivan Mich
Ivan Mich am 22 Okt. 2022
Kommentiert: Torsten am 24 Okt. 2022
I woyld like to intepolate my data. I have an ascii file with 3 columns (x,y,z). Each column has 700 lines (number). I am using the following commands, in order to interpolate (smooth) my data:
clc
clear
filename1= 'mydata.csv';
[d1,tex]= xlsread(filename1);
y=d1(:,3);
x=d1(:,4);
z=d1(:,5);
[xq, yq] = meshgrid(...
linspace(min(x),max(x)),...
linspace(min(y),max(y)));
zq = interp2(x,y,z,xq,yq,'cubic');
[c,h]= contourf(xq,yq,zq);
but command window shows me:
Error using griddedInterpolant
The grid vectors must be strictly monotonically increasing.
Error in interp2>makegriddedinterp (line 228)
F = griddedInterpolant(varargin{:});
Error in interp2 (line 128)
F = makegriddedinterp({X, Y}, V, method,extrap);
could you please help me?
  3 Kommentare
Ivan Mich
Ivan Mich am 22 Okt. 2022
I am uploading a sample of data file
Torsten
Torsten am 22 Okt. 2022
No, the two inputs being provided to the INTERP2 are not vectors, but are in fact the (matrix) outputs from MESHGRID.
The inputs x,y and z to interp2 the OP provides are vectors (which is wrong). The query values xq and yq are matrices obtained from "meshgrid".

Melden Sie sich an, um zu kommentieren.

Antworten (2)

Torsten
Torsten am 22 Okt. 2022
Bearbeitet: Torsten am 22 Okt. 2022
Read about the requirements for input arguments x, y and z for interp2:
Paragraph "Input Arguments".
  4 Kommentare
Torsten
Torsten am 22 Okt. 2022
Your data are not gridded. Thus you will have to use "scatteredInterpolant":
F = scatteredInterpolant(x,y,z);
[xq,yq] = meshgrid(linspace(min(x),max(x)),linspace(min(y),max(y)));
zq = F(xq,yq)
Steven Lord
Steven Lord am 22 Okt. 2022
Confirm that your x and y vectors are sorted.
issorted(x, 'strictascend')
issorted(y, 'strictascend')
One or both of those will return false. Once you know which one(s) are not strictly ascending, you need to determine why. Plotting that vector may help you identify where the flat, decreasing, or missing segments are.

Melden Sie sich an, um zu kommentieren.


Torsten
Torsten am 22 Okt. 2022
d1 = readmatrix("https://de.mathworks.com/matlabcentral/answers/uploaded_files/1165673/mydata.csv");
y=d1(:,3);
x=d1(:,4);
z=d1(:,5);
F = scatteredInterpolant(x,y,z,'nearest');
Warning: Duplicate data points have been detected and removed - corresponding values have been averaged.
[xq,yq] = meshgrid(linspace(min(x),max(x)),linspace(min(y),max(y)));
zq = F(xq,yq);
contourf(xq,yq,zq)
colorbar
  3 Kommentare
Stephen23
Stephen23 am 24 Okt. 2022
@Ivan Mich: you could try a thin-plate spline: https://www.mathworks.com/help/curvefit/tpaps.html
Torsten
Torsten am 24 Okt. 2022
Your z-data are not continuous - they only take values 1 1.5 2 2.5 3 ... 9. So would continuous values as 3.1865 even make sense for your application ?
And if you look at the contour plot from your raw data above: the only thing you can learn is that the values for the south-east part are lower than those for the north-west part.
Everything else like further smoothing would not be appropriate in my opinion.

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Contour Plots finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by