Solve 2nd order ODE using Euler Method
69 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
VERY new to Matlab...
Trying to implement code to use Euler method for solving second order ODE.
Equation:
x'' + 2*z*w*x' + w*x = 2*sin(2*pi*2*t)
z and w are constants. "t" is time.
Any help would be great.
Thanks!
5 Kommentare
James Tursa
am 4 Okt. 2022
@Matt - FYI, when you get errors, it is best to post the entire error message along with your code. Regardless, see my answer below ...
Akzeptierte Antwort
James Tursa
am 4 Okt. 2022
Bearbeitet: James Tursa
am 4 Okt. 2022
You start your loop with i=1, but that means your x_d(i-1) will be x_d(0), an invalid index, hence the error. You need to set initial values for x_d(1) and x(1), and then have your starting loop index be 2. E.g.,
x(1) = initial x value
x_d(1) = initial xdot value
for i=2:n1 % start loop index at 2
x_dd(i-1) = use (i-1) indexes on everything on rhs
x_d(i) = use (i-1) indexes on everything on rhs
x(i) = use (i-1) indexes on everything on rhs
Weitere Antworten (1)
Davide Masiello
am 27 Sep. 2022
Bearbeitet: Davide Masiello
am 27 Sep. 2022
Hi Matt - a second order ODE can be decomposed into two first order ODEs.
The secret is to set 2 variables y as
The you have
An example code is
clear,clc
tspan = [0,1]; % integrates between times 0 and 1
x0 = [1 0]; % initial conditions for x and dx/dt
[t,X] = ode15s(@odeFun,tspan,x0); % passes functions to ODE solver
x = X(:,1);
dxdt = X(:,2);
plot(t,x)
function dydt = odeFun(t,y)
z = 1;
w = 1;
dydt(1,1) = y(2);
dydt(2,1) = 2*z*w*y(2)-w*y(1)+2*sin(2*pi*2*t);
end
1 Kommentar
Davide Masiello
am 27 Sep. 2022
For more info, I suggest reading the documentation at the following link.
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!