Solve 2nd order ODE using Euler Method

21 Ansichten (letzte 30 Tage)
Matt
Matt am 27 Sep. 2022
Kommentiert: Matt am 4 Okt. 2022
VERY new to Matlab...
Trying to implement code to use Euler method for solving second order ODE.
Equation:
x'' + 2*z*w*x' + w*x = 2*sin(2*pi*2*t)
z and w are constants. "t" is time.
Any help would be great.
Thanks!
  5 Kommentare
James Tursa
James Tursa am 4 Okt. 2022
@Matt - FYI, when you get errors, it is best to post the entire error message along with your code. Regardless, see my answer below ...
Matt
Matt am 4 Okt. 2022
Will do. Really new here so just learning the ways about this. I'll be back! :-)

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

James Tursa
James Tursa am 4 Okt. 2022
Bearbeitet: James Tursa am 4 Okt. 2022
You start your loop with i=1, but that means your x_d(i-1) will be x_d(0), an invalid index, hence the error. You need to set initial values for x_d(1) and x(1), and then have your starting loop index be 2. E.g.,
x(1) = initial x value
x_d(1) = initial xdot value
for i=2:n1 % start loop index at 2
x_dd(i-1) = use (i-1) indexes on everything on rhs
x_d(i) = use (i-1) indexes on everything on rhs
x(i) = use (i-1) indexes on everything on rhs

Weitere Antworten (1)

Davide Masiello
Davide Masiello am 27 Sep. 2022
Bearbeitet: Davide Masiello am 27 Sep. 2022
Hi Matt - a second order ODE can be decomposed into two first order ODEs.
The secret is to set 2 variables y as
The you have
An example code is
clear,clc
tspan = [0,1]; % integrates between times 0 and 1
x0 = [1 0]; % initial conditions for x and dx/dt
[t,X] = ode15s(@odeFun,tspan,x0); % passes functions to ODE solver
x = X(:,1);
dxdt = X(:,2);
plot(t,x)
function dydt = odeFun(t,y)
z = 1;
w = 1;
dydt(1,1) = y(2);
dydt(2,1) = 2*z*w*y(2)-w*y(1)+2*sin(2*pi*2*t);
end

Kategorien

Mehr zu Programming finden Sie in Help Center und File Exchange

Produkte


Version

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by