Would you tell me the code for Fisher Pearson skewness?
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Chris
am 20 Sep. 2022
Kommentiert: Sim
am 27 Nov. 2023
Would you tell me the code for Fisher Pearson skewness?
How can I get the skewness with Fisher Pearson formula..?
0 Kommentare
Akzeptierte Antwort
David Goodmanson
am 21 Sep. 2022
Bearbeitet: David Goodmanson
am 21 Sep. 2022
Hi Chris,
y = rand(1,100); % some data
m = mean(y);
n = numel(y);
scalc = (sum((y-m).^3)/n)/var(y,1)^(3/2)
s = skewness(y)
scalc agrees with Matlab's skewness function.
You have to be careful using the variance here (or the standard deviation). The var default is
sum((y-m)^2)/(n-1)
but for variance as used in Matlab's skewness function, you divide by n instead of (n-1). That means using var(y,1) rather than the default var(y). Same idea for std if that were used.
0 Kommentare
Weitere Antworten (1)
Walter Roberson
am 20 Sep. 2022
FPskewness = sum(x - mean(x)) / numel(x) / std(x).^3
You would need to be more rigourous if you wanted to handle non-vectors.
5 Kommentare
John D'Errico
am 21 Sep. 2022
Jeff is correct. Skewness would be a scaled (normalized) 3rd central moment, so there MUST be a cube in there.
Sim
am 27 Nov. 2023
Hi, what should be changed, in the @Walter Roberson formula, to make it correct? I do not understand...
y = rand(1,100); % some data
m = mean(y);
n = numel(y);
s = skewness(y) % matlab embedded function
scalc = (sum((y - m).^3) / numel(y)) / var(y,1)^(3/2) % David Goodmanson solution
FPskewness = sum(y - mean(y)) / numel(y) / std(y).^3 % Walter Roberson solution
Siehe auch
Kategorien
Mehr zu Annotations finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!