In a custom CNN network, how can I know about the input size for each layer?
    2 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
 For preparing the type of table as shown in the above figure,how can I get values for the last column of the table i.e Input Size for each layer in my CNN model? 
0 Kommentare
Antworten (1)
  Image Analyst
      
      
 am 23 Jun. 2022
        When you build a custom network, for example like this:
layers = [
    imageInputLayer([227, 227, 3])
    convolution2dLayer(3,8,'Padding','same')
    batchNormalizationLayer
    reluLayer
    averagePooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,16,'Padding','same')
    batchNormalizationLayer
    reluLayer
    averagePooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,32,'Padding','same')
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,32,'Padding','same')
    batchNormalizationLayer
    reluLayer
    dropoutLayer(0.2)
    fullyConnectedLayer(1)
    regressionLayer];
the 227 is not something you "get".  It's something you specify.  Bigger images take longer to train but will be more accurate.  If your accuracy is low, try increasing the size of images you supply.
If you're doing transfer learning, like adapting alexnet or googlenet, then you need to know what image sizes they want and make sure you supply images of that size.
4 Kommentare
Siehe auch
Kategorien
				Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange
			
	Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

