special criteria for ode solver

5 Ansichten (letzte 30 Tage)
Patrick Nowohradsky
Patrick Nowohradsky am 19 Jun. 2022
Kommentiert: Sam Chak am 20 Jun. 2022
The function alpha is defined from -1 to 1 because of the arcussinus
How can I make this work so that the ode solver changes the formula if 2.52 is reached?
Any ideas?
clear
Parameter
syms phi(t) m c g alpha(t) CB_x CB_z BA_x BA_z v_x v_z x0
m= 100;
copt= 3558.7;
g= 9.81;
x0=1.342007;
k=0.75;
phi_d=diff(phi);
phi_dd= diff(phi,t,2);
if phi(t) < 2.52
alpha(t)=asin((1.7-2.1*cos(phi(t)))/3.6);
elseif 2.52<=phi(t)<=2.53
alpha(t)=0
elseif phi(t)>=2.53
asin((1.7+2.1*cos(phi(t)))/3.6);
end
CB_x= -2.1*sin(phi);
CB_z= 2.1*cos(phi);
BA_x= 1.8*cos(alpha(t));
BA_z= 1.8*sin(alpha(t));
v_x=diff(CB_x+BA_x);
v_z=diff(CB_z+BA_z);
alpha_d=diff(alpha(t),t);
v=sqrt(v_x^2+v_z^2);
% v=sqrt(2.1^2*phi_d^2+1.8^2*alpha_d^2-2*2.1*1.8*phi_d*alpha_d*sin(phi-alpha))
r1=((CB_x+BA_x)^2+(CB_z+BA_z)^2)^0.5;
x=sqrt(2.1^2+0.6^2-2*2.1*0.6*cos(phi(t)))-0.3105829;
U=1/2*copt*k*(x-x0)^2;
W=-m*g*1.8*sin(alpha(t));
V=U+W;
T_trans=0.5*m*v^2;
T_rot=1/3*m*3.6^2*alpha_d^2;
T=T_trans+T_rot;
L_1=diff(diff(T,phi_d),t);
L_2=diff(T,phi(t));
L_3=diff(V,phi(t));
% L_1=diff(diff(T,phi_d),phi)*phi_d+diff(diff(T,phi_d),phi_d)*phi_dd;
phi_dd_test=(diff(diff(T,phi_d),phi)*phi_d-L_3+L_2)/diff(diff(T,phi_d),phi_d);
F=L_1-L_2+L_3;
[Y,S] = odeToVectorField(F==0)
tspan=[0 30];
y0=[deg2rad(35.9) 0];
M = matlabFunction(Y,'vars', {'t','Y'});
[t,Y] = ode45(@(t, Y) M(t,Y),tspan,y0);
plot(t, Y, 'linewidth', 1.5)
xlim([0.00 10.00])
ylim([-4.00 4.00])
zlim([-1.00 1.00])
legend(["Winkel","Winkelgeschwindigkeit"])
xlabel("Time")
  3 Kommentare
Torsten
Torsten am 19 Jun. 2022
@Patrick Nowohradsky comment moved here:
Yes u are right there should be an alpha=
Sam Chak
Sam Chak am 20 Jun. 2022
Can you confirm if your alpha looks like this? Only the real parts are plotted from 0 to .
Note that the principal branch of (arcsine) is . The branch cuts into the complex plane at this interval, or approximately .
Do you really want to make at this interval ?

Melden Sie sich an, um zu kommentieren.

Antworten (0)

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by