Linear fit over multiple Rows without using Loops (or polyfit)?
7 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Jason
am 28 Mär. 2022
Kommentiert: Jason
am 28 Mär. 2022
Hello, I have a matrix of data
I=[1.8,3,3.6,4.2,4.7,5.3,5.5;3.3,4.2,4.8,5.3,5.8,6.3,6.6;4.5,5.6,6.3,6.8,7.3,7.9,8.2;6.1,6.9,7.5,8,8.6,9,9.4]
I =
1.8000 3.0000 3.6000 4.2000 4.7000 5.3000 5.5000
3.3000 4.2000 4.8000 5.3000 5.8000 6.3000 6.6000
4.5000 5.6000 6.3000 6.8000 7.3000 7.9000 8.2000
6.1000 6.9000 7.5000 8.0000 8.6000 9.0000 9.4000
I would like to get the gradient of a straight line fit through each row.
i.e. I was just going to loop over all the rows something like this:
x = 1:7
1 2 3 4 5 6 7
y=I(1,:)
p=polyfit(x,y,1)
I then just want to average all those gradients (m's)
I was wondering if there was a better way to do this rather than use polyfit and loops?
0 Kommentare
Akzeptierte Antwort
Image Analyst
am 28 Mär. 2022
No, I don't think so. That way is fine.
I = [1.8,3,3.6,4.2,4.7,5.3,5.5;3.3,4.2,4.8,5.3,5.8,6.3,6.6;4.5,5.6,6.3,6.8,7.3,7.9,8.2;6.1,6.9,7.5,8,8.6,9,9.4]
[rows, columns] = size(I)
x = 1 : columns;
coefficients = zeros(rows, 2);
for row = 1 : rows
coefficients(row, :) = polyfit(x, I(row, :), 1);
end
coefficients % Let's see them in the command window:
% Compute means
meanSlope = mean(coefficients(:, 1))
meanOffset = mean(coefficients(:, 2))
4 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Get Started with Curve Fitting Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!