Converting location of a 2x3 vector into a matrix with value 1

2 Ansichten (letzte 30 Tage)
Suppose I have
a = 2×3
1 3
2 4
7 8
Now I want to create a matrix of dimension 10 x 10 where the entries 1,3 and 2,4 and 7,8 are equal to one.
Z = zeros(10) % 10 x 10 matrix containing only zeros
Z(a(1,1),a(1,2))=1 % now entry 1,3 is equal to 1
This is an illustrative example and I could for sure just code the second line three times. However for a large matrix a this will be tedious. I have tried to solve this problem with some for loops but without any positve result.
  3 Kommentare
Wietze Zijpp
Wietze Zijpp am 23 Mär. 2022
Thank you for your response. It is more than the output I expect. I would like to only obtain the output
Z(a(1,1),a(1,2))=1; % so entry 1.3 =1
Z(a(2,1),a(2,2))=1; % entry 2,4 = 1
Z(a(3,1),a(3,2))=1; % entry 7,8 = 1
Arif Hoq
Arif Hoq am 23 Mär. 2022
or this one ?
a = [1 3;2 4;7 8];
Z = zeros(10) ;% 10 x 10 matrix containing only zeros
Z(a(1,1),a(1,2))=1; % now entry 1,3 is equal to 1
Z(a(2,1),a(2,2))=1;
Z(a(3,1),a(3,2))=1
Z = 10×10
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Voss
Voss am 23 Mär. 2022
Bearbeitet: Voss am 23 Mär. 2022
a = [1 3
2 4
7 8];
Z = zeros(10,10);
Z(sub2ind(size(Z),a(:,1),a(:,2))) = 1
Z = 10×10
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Weitere Antworten (3)

Arif Hoq
Arif Hoq am 23 Mär. 2022
Bearbeitet: Arif Hoq am 23 Mär. 2022
if 2nd one is your expecter output , then
a = [1 3;2 4;7 8];
Z = zeros(10) ;% 10 x 10 matrix containing only zeros
row=size(a,1);
j=1:2;
for i=1:row
Z(a(i,j(1)),a(i,j(2)))=1;
end

Stephen23
Stephen23 am 23 Mär. 2022
Bearbeitet: Stephen23 am 23 Mär. 2022
"However for a large matrix a this will be tedious."
If you have a large matrix it may be better if it were a sparse array (which can make operations using it more efficient), in which case this task is very easy:
a = [1,3;2,4;7,8];
m = sparse(a(:,1),a(:,2),1,10,10)
m =
(1,3) 1 (2,4) 1 (7,8) 1
full(m) % checking
ans = 10×10
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bruno Luong
Bruno Luong am 23 Mär. 2022
Bearbeitet: Bruno Luong am 23 Mär. 2022
a = [1,3;2,4;7,8]; % assumed there is no repeated indexes
A = accumarray(a,1,[10,10])
A = 10×10
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Kategorien

Mehr zu Creating and Concatenating Matrices finden Sie in Help Center und File Exchange

Tags

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by