Previously accessible file is now inaccessible.

8 Ansichten (letzte 30 Tage)
Cloud Wind
Cloud Wind am 22 Mär. 2022
Beantwortet: Richard am 24 Mär. 2022
Hi everyone, I was using deep learning toolbox to train a CNN. After I edit my code (which can successfully run), it shows the following wrong message "Previously accessible file "inmem:///deep_learning/tpc723775a_5df4_4b61_96f1_552a4a17e7e2.m" is now inaccessible."
Previously accessible file "inmem:///deep_learning/tp7a8bcbea_11cf_4603_8ba8_f6278a23f4fa.m" is now inaccessible.
Error in deep.internal.recording.convert.tapeToFunction>@(varargin)fcnWithConstantsInput(varargin{:},constants) (line 37)
fcn = @(varargin)fcnWithConstantsInput(varargin{:},constants);
Error in deep.internal.AcceleratedOp/backward (line 69)
[varargout{1:op.NumGradients}] = backwardFun(varargin{:});
Error in deep.internal.recording.RecordingArray/backwardPass (line 89)
grad = backwardTape(tm,{y},{initialAdjoint},x,retainData,false,0);
Error in dlarray/dlgradient (line 132)
[grad,isTracedGrad] = backwardPass(y,xc,pvpairs{:});
Error in test_modelGradients320 (line 14)
[gradientsSubnet,gradientsParams] = dlgradient(loss,dlnet.Learnables,fcParams);
Error in deep.internal.dlfeval (line 17)
[varargout{1:nargout}] = fun(x{:});
Error in dlfeval (line 40)
[varargout{1:nargout}] = deep.internal.dlfeval(fun,varargin{:});
Error in test_siamese320 (line 126)
[gradientsSubnet,gradientsParams,loss] = dlfeval(@test_modelGradients320,dlnet,fcParams,dlX1,dlX2,pairLabels,name);
Actually, I didn't find so named file existing anywhere in my computer. I have searched and tried all potential solutions but still cannot solve this problem. The most terrible thing is that it still doesn't work even if I rewrite the code in a new script.
I was using win10+matlab 2021b. Hope for any helpful solutions, thank you!
  8 Kommentare
Cloud Wind
Cloud Wind am 23 Mär. 2022
Bearbeitet: Cloud Wind am 24 Mär. 2022
@Richard Thanks Richard. It works by specifying ("Acceleration", "none") . But the final performance is a bit worse.
I post my script and functions. Hope they can help you find the problem!
The main script file and the function files called in the script:
clc; clear;
downloadFolder = 'F:\exps\siamese_scd\data';
dataFolderTrain = fullfile(downloadFolder,'train');
dataFolderTest = fullfile(downloadFolder,'test');
%***************************************************
net = alexnet;
layers=net.Layers(1:22);
layers=[layers(1:18,:);layers(20:21,:)];
lgraph = layerGraph(layers);
dlnet = dlnetwork(lgraph);
fcWeights = dlarray(0.01*randn(1,4352));
fcBias = dlarray(0.01*randn(1,1));
fcParams = struct(...
"FcWeights",fcWeights,...
"FcBias",fcBias);
clear net layers
%***************************************************
imdsTrain = imageDatastore(dataFolderTrain, ...
'IncludeSubfolders',true, ...
'LabelSource','none');
files = imdsTrain.Files;
parts = split(files,filesep);
labels = join(parts(:,(end-2):(end-1)),'_');
imdsTrain.Labels = categorical(labels);
imdsTest = imageDatastore(dataFolderTest, ...
'IncludeSubfolders',true, ...
'LabelSource','none');
files = imdsTest.Files;
parts = split(files,filesep);
labels = join(parts(:,(end-2):(end-1)),'_');
imdsTest.Labels = categorical(labels);
%***************************************************
numIterations =1000;
train_miniBatchSize =8;
test_minBatchSize = 4;
learningRate = 2e-5;
trailingAvgSubnet = [];
trailingAvgSqSubnet = [];
trailingAvgParams = [];
trailingAvgSqParams = [];
gradDecay = 0.9;
gradDecaySq = 0.99;
executionEnvironment = "gpu";
plots = "training-progress";
if plots == "training-progress"
figure
subplot(2,1,1)
trainingPlotAxes = gca;
% trainingPlotAxes.YLim = [0 1];
lineLossTrain = animatedline(trainingPlotAxes);
xlabel(trainingPlotAxes,"Iteration")
ylabel(trainingPlotAxes,"Loss")
title(trainingPlotAxes,"Loss During Training")
subplot(2,1,2)
testingPlotAxes = gca;
% testingPlotAxes.YLim = [0 1];
lineLosstest = animatedline(testingPlotAxes);
xlabel(testingPlotAxes,"Iteration")
ylabel(testingPlotAxes,"Loss")
title(testingPlotAxes,"Loss During Testing")
end
%***************************************************
for iteration = 1:numIterations
[X1,X2,pairLabels] = getAlexnetBatch(imdsTrain,train_miniBatchSize);
[tX1,tX2,tpairLabels] = getAlexnetTest(imdsTest,test_minBatchSize);
dlX1 = dlarray(single(X1),'SSCB');
dlX2 = dlarray(single(X2),'SSCB');
tdlX1 = dlarray(single(tX1),'SSCB');
tdlX2 = dlarray(single(tX2),'SSCB');
if executionEnvironment == "gpu"
dlX1 = gpuArray(dlX1);
dlX2 = gpuArray(dlX2);
tdlX1 = gpuArray(tdlX1);
tdlX2 = gpuArray(tdlX2);
end
[gradientsSubnet,gradientsParams,loss] = dlfeval(@modelGradients,dlnet,fcParams,dlX1,dlX2,pairLabels);
lossValue = double(gather(extractdata(loss)));
[~,~,tloss] = dlfeval(@modelGradients,dlnet,fcParams,tdlX1,tdlX2,tpairLabels);
tlossValue = double(gather(extractdata(tloss)));
clear dlX1 dlX2 tdlX1 tdlX2
%***************************************************
[dlnet,trailingAvgSubnet,trailingAvgSqSubnet] = ...
adamupdate(dlnet,gradientsSubnet, ...
trailingAvgSubnet,trailingAvgSqSubnet,iteration,learningRate,gradDecay,gradDecaySq);
[fcParams,trailingAvgParams,trailingAvgSqParams] = ...
adamupdate(fcParams,gradientsParams, ...
trailingAvgParams,trailingAvgSqParams,iteration,learningRate,gradDecay,gradDecaySq);
if plots == "training-progress"
addpoints(lineLossTrain,iteration,lossValue);
addpoints(lineLosstest,iteration,tlossValue);
end
drawnow;
temp1=sprintf('iteration: %d ----- %d',[iteration,numIterations]);
temp2=sprintf('loss: Training:%0.4f ----- Testing:%0.4f',[lossValue,tlossValue]);
disp(temp1);
disp(temp2);
end
save siamese_AlexNet dlnet fcParams iteration lossValue tlossValue
%******************************************************************************************
% the called functions
%******************************************************************************************
function [gradientsSubnet,gradientsParams,loss] = modelGradients(dlnet,fcParams,dlX1,dlX2,pairLabels)
% Pass the image pair through the network
Y = forwardSiamese(dlnet,fcParams,dlX1,dlX2);
% Calculate binary cross-entropy loss
loss = binarycrossentropy(Y,pairLabels);
% Calculate gradients of the loss with respect to the network learnable
% parameters
[gradientsSubnet,gradientsParams] = dlgradient(loss,dlnet.Learnables,fcParams);
end
function loss = binarycrossentropy(Y,pairLabels)
% binarycrossentropy accepts the network's prediction Y, the true
% label, and pairLabels, and returns the binary cross-entropy loss value.
% Get precision of prediction to prevent errors due to floating
% point precision
precision = underlyingType(Y);
% Convert values less than floating point precision to eps.
Y(Y < eps(precision)) = eps(precision);
%convert values between 1-eps and 1 to 1-eps.
Y(Y > 1 - eps(precision)) = 1 - eps(precision);
% Calculate binary cross-entropy loss for each pair
loss = -pairLabels.*log(Y) - (1 - pairLabels).*log(1 - Y);
% Sum over all pairs in minibatch and normalize.
loss = sum(loss)/numel(pairLabels);
end
%***************************************************************************************
function Y_s = forwardSiamese(dlnet,fcParams,dlX1,dlX2)
% forwardSiamese accepts the network and pair of training images, and returns a
% prediction of the probability of the pair being similar (closer to 1) or
% dissimilar (closer to 0). Use forwardSiamese during training.
% Pass the first image through the twin subnetwork
F1 = forward(dlnet,dlX1);
F1 = sigmoid(F1);
% Pass the second image through the twin subnetwork
F2 = forward(dlnet,dlX2);
F2 = sigmoid(F2);
% Subtract the feature vectors
Y = abs(F1 - F2);
% compute distance map
F1_conv = forward(dlnet,dlX1,'Outputs','relu5');
F1_conv = sigmoid(F1_conv);
F1_conv = reshape(F1_conv,[size(F1_conv,1)*size(F1_conv,2),size(F1_conv,3),size(F1_conv,4)]);
F2_conv = forward(dlnet,dlX2,'Outputs','relu5');
F2_conv = sigmoid(F2_conv);
F2_conv = reshape(F2_conv,[size(F2_conv,1)*size(F2_conv,2),size(F2_conv,3),size(F2_conv,4)]);
D_X1_X2=abs(F1_conv-F2_conv);
D_X1_X2=max(D_X1_X2,[],1);
D_X1_X2=squeeze(D_X1_X2);
% fuse local and global similarity
Y_s=[D_X1_X2;Y];
Y_s = dlarray(Y_s,'CB');
Y_s = sigmoid(Y_s);
% Pass the result through a fullyconnect operation
Y_s = fullyconnect(Y_s,fcParams.FcWeights,fcParams.FcBias);
% Convert to probability between 0 and 1.
Y_s = sigmoid(Y_s);
end
%***************************************************************************************
function [X1,X2,pairLabels] = getAlexnetTest(imds,miniBatchSize)
pairLabels = zeros(1,miniBatchSize);
X1 = zeros([227 227 3 miniBatchSize]);
X2 = zeros([227 227 3 miniBatchSize]);
imdsaug = augmentedImageDatastore([227 227],imds);
batch=readall(imdsaug);
for i = 1:miniBatchSize
choice = rand(1);
if choice < 0.5
[pairIdx1,pairIdx2,pairLabels(i)] = getSimilarPair(batch.response);
else
[pairIdx1,pairIdx2,pairLabels(i)] = getDissimilarPair(batch.response);
end
X1(:,:,:,i) =batch.input{pairIdx1};
X2(:,:,:,i) =batch.input{pairIdx2};
end
end
function [pairIdx1,pairIdx2,pairLabel] = getSimilarPair(classLabel)
% getSimilarSiamesePair returns a random pair of indices for images
% that are in the same class and the similar pair label = 1.
% Find all unique classes.
classes = unique(classLabel);
% Choose a class randomly which will be used to get a similar pair.
classChoice = randi(numel(classes));
% Find the indices of all the observations from the chosen class.
idxs = find(classLabel==classes(classChoice));
% Randomly choose two different images from the chosen class.
pairIdxChoice = randperm(numel(idxs),2);
pairIdx1 = idxs(pairIdxChoice(1));
pairIdx2 = idxs(pairIdxChoice(2));
pairLabel = 1;
end
function [pairIdx1,pairIdx2,label] = getDissimilarPair(classLabel)
% Find all unique classes.
classes = unique(classLabel);
% Choose two different classes randomly which will be used to get a dissimilar pair.
classesChoice = randperm(numel(classes),2);
% Find the indices of all the observations from the first and second classes.
idxs1 = find(classLabel==classes(classesChoice(1)));
idxs2 = find(classLabel==classes(classesChoice(2)));
% Randomly choose one image from each class.
pairIdx1Choice = randi(numel(idxs1));
pairIdx2Choice = randi(numel(idxs2));
pairIdx1 = idxs1(pairIdx1Choice);
pairIdx2 = idxs2(pairIdx2Choice);
label = 0;
end
%***************************************************************************************
function [X1,X2,pairLabels] = getAlexnetBatch(imds,miniBatchSize)
pairLabels = zeros(1,miniBatchSize);
X1 = zeros([227 227 3 miniBatchSize]);
X2 = zeros([227 227 3 miniBatchSize]);
imageAugmenter = imageDataAugmenter('RandRotation',[90,270],'RandXReflection',true,'RandYReflection',true);
imdsaug = augmentedImageDatastore([227 227],imds,'DataAugmentation',imageAugmenter);
batch=readall(imdsaug);
for i = 1:miniBatchSize
choice = rand(1);
if choice < 0.5
[pairIdx1,pairIdx2,pairLabels(i)] = getSimilarPair(batch.response);
else
[pairIdx1,pairIdx2,pairLabels(i)] = getDissimilarPair(batch.response);
end
X1(:,:,:,i) =batch.input{pairIdx1};
X2(:,:,:,i) =batch.input{pairIdx2};
end
end
function [pairIdx1,pairIdx2,pairLabel] = getSimilarPair(classLabel)
% getSimilarSiamesePair returns a random pair of indices for images
% that are in the same class and the similar pair label = 1.
% Find all unique classes.
classes = unique(classLabel);
% Choose a class randomly which will be used to get a similar pair.
classChoice = randi(numel(classes));
% Find the indices of all the observations from the chosen class.
idxs = find(classLabel==classes(classChoice));
% Randomly choose two different images from the chosen class.
pairIdxChoice = randperm(numel(idxs),2);
pairIdx1 = idxs(pairIdxChoice(1));
pairIdx2 = idxs(pairIdxChoice(2));
pairLabel = 1;
end
function [pairIdx1,pairIdx2,label] = getDissimilarPair(classLabel)
% getDissimilarSiamesePair returns a random pair of indices for images
% that are in different classes and the dissimilar pair label = 0.
% Find all unique classes.
classes = unique(classLabel);
% Choose two different classes randomly which will be used to get a dissimilar pair.
classesChoice = randperm(numel(classes),2);
% Find the indices of all the observations from the first and second classes.
idxs1 = find(classLabel==classes(classesChoice(1)));
idxs2 = find(classLabel==classes(classesChoice(2)));
% Randomly choose one image from each class.
pairIdx1Choice = randi(numel(idxs1));
pairIdx2Choice = randi(numel(idxs2));
pairIdx1 = idxs1(pairIdx1Choice);
pairIdx2 = idxs2(pairIdx2Choice);
label = 0;
end
Richard
Richard am 24 Mär. 2022
@Cloud Wind thanks for the code, I think this will be very helpful for us in understanding the exact nature of the issue.
For now, the best suggestion I have is to continue using Acceleration="none".

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Richard
Richard am 24 Mär. 2022
The errot itself is related to performance optimizations within the dlnetwork class. You should be able to prevent it by specifying ("Acceleration", "none") as an additional parameter-value pair when you call forward on the network, i,.e.:
Y = forward(net, X, "Acceleration", "none")
(Obviously this may also have an adverse impact on performance, unfortunately)

Weitere Antworten (0)

Produkte


Version

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by