Bisection method relative error
9 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Sazcl
am 17 Mär. 2022
Kommentiert: Jan
am 2 Aug. 2023
Hello everyone, I don't use MATLAB very well. I have a question. If you can help, I'd appreciate.
I have a function below that I have to find its roots using bisection method. I want the for loop to stop on the point where relative error is lower than %0.05. I couldn't understand how I can define n.
f=@(x) log(x)-cos(x)-exp(-x);
x1=1;
x2=2;
xmid=(x1+x2)/2
for i=1:n;
if (f(xmid)*f(x2))<0
x1=xmid;
else
x2=xmid;
end
xmid=(x1+x2)/2;
end
fprintf('The root is: %3.8g\n',xmid)
0 Kommentare
Akzeptierte Antwort
Mohammed Hamaidi
am 17 Mär. 2022
Bearbeitet: Mohammed Hamaidi
am 18 Mär. 2022
Hi
Just use "while" loop with your condition as follows:
f=@(x) log(x)-cos(x)-exp(-x);
x1=1;
x2=2;
xmid=(x1+x2)/2;
while (x2-x1)>0.0005
if (f(xmid)*f(x2))<0
x1=xmid;
else
x2=xmid;
end
xmid=(x1+x2)/2;
end
fprintf('The root is: %3.8g\n',xmid)
4 Kommentare
Weitere Antworten (1)
John
am 31 Jul. 2023
function [p, pN] = Bisection_371(a,b,N, tol)
if f(a)*f(b) > 0
disp("IVT does not guarantee a root in [a,b]")
elseif f(a)*f(b) == 0
disp("The root is either a or b")
else
for n = 1:N
p = (a+b)/2;
pN(n) = p;
if f(p) == 0 || (b-a)/2 < tol
break
elseif f(p)*f(a) < 0
b = p;
else
a = p;
end
end
end
end
%f = @(x)x^2 - 1;
function y = f(x)
y = x^2 - 1;
end
1 Kommentar
Jan
am 2 Aug. 2023
For numerical reasons it is rather unlikely that the condiotion f(p) == 0 is met exactly. Use a tolerance instead.
Siehe auch
Kategorien
Mehr zu Matrix Indexing finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!