Vandermonde-like matrix
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Mokrane Mahdi
am 3 Mär. 2022
Kommentiert: Mokrane Mahdi
am 3 Mär. 2022
For any given number x, what's the easiest way to generate the following square matrix without using any loop:
0 x^(-0.5) x^(-1.0) x^(-1.5) x^(-2.0)
x^(-0.5) x^(-1.0) x^(-1.5) x^(-2.0) x^(-2.5)
x^(-1.0) x^(-1.5) x^(-2.0) x^(-2.5) x^(-3.0)
x^(-1.5) x^(-2.0) x^(-2.5) x^(-3.0) x^(-3.5)
x^(-2.0) x^(-2.5) x^(-3.0) x^(-3.5) x^(-4.0)
Here, in this example, I set the size of the matrix to be 5, but it has to be generated for any integer n.
Notice the matrix does look like the Vandermonde matrix, hence the idea of using repmat and cumprod commands..
Thanks in advance !
0 Kommentare
Akzeptierte Antwort
KSSV
am 3 Mär. 2022
p = -(0:0.5:4) ; % power values
n = 5 ; % n value
ind1 = bsxfun(@plus, (1 : n), (0 : numel(p) - n).'); % make moving window indices
p = p(ind1) % power values
x = rand ; % your x
V = x.^p % what you wanted
Weitere Antworten (1)
John D'Errico
am 3 Mär. 2022
The easiest way? Probably this line: (in R2016b or later)
x.^(((0:-1:1-n)' + (0:-1:1-n))/2)
If you want to use two lines of code, then it looks simpler yet.
N = (0:-1:1-n)/2;
x.^(N' + N)
Easrlier releases than R2016b would use bsxfun.
Siehe auch
Kategorien
Mehr zu Creating and Concatenating Matrices finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!