How Can I Speed up a loop that solves a pde?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello,
I am solving the 4th order pde for plate vibration and after discretizing the pde and solving for W(x,y,t) or W(k,m,n+1) as a function of W(k,m,n) and W(k,m,n-1) I get a double for loop like
for k=3:K-3
for m=3:M-3
Wnp1(k,m)=coe(1,3)*Wn(k-2,m)...
+ coe(2,2)*Wn(k-1,m-1) + coe(2,3)*Wn(k-1,m) + coe(2,4)*Wn(k-1,m+1)...
+coe(3,1)*Wn(k,m-2) + coe(3,2)*Wn(k,m-1)+coe(3,3)*Wn(k,m)...
+coe(3,4)*Wn(k,m+1)+coe(3,5)*Wn(k,m+2)...
+coe(4,2)*Wn(k+1,m-1)+coe(4,3)*Wn(k+1,m)+coe(4,4)*Wn(k+1,m+1)...
+coe(5,3)*Wn(k+2,m)...
+cNm1*Wnm1(k,m)+SWW(k,m);
end
end
where coe is a 5x5 matrix with several zeros that contains the coefficients in the finite difference approximation to the pde and Wn(k,m) represents the displacement at position k,m at time n.
I was hoping to find a way to use matrix multiplication that might speed things up but I am stumped. Does anyone have any suggestions?
Thanks,
Dave
1 Kommentar
Antworten (1)
Zoltán Csáti
am 24 Nov. 2014
When you did your calculations on paper, you probably wrote the problem as a linear system. Try to create the coefficient matrix in a vectorized manner. Or if you cannot do it, attach an image of the coeff. matrix so that we can see it.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Boundary Conditions finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!