''Conversion to function_handle from double is not possible.''
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
I get this error when I run my code. I was looking up what this error means, but I can't figure it out in context of my code.. This is main code.
clc
clear all
global x1e x2e x3e x1r x2r x3r alfa12 alfa13 alfa23
%LLE podatci - ekstrakcija aromata smjesom TTEG i vode - 6 komponenata (heptan) na 60°C
%eksperimentalni podatci - ekstrakt
x1e = [0.0140 0.0175 0.0163 0.0188 0.0181 0.0227 0.0228 0.0214 0.0191 0.0208];
x2e = [0.0729 0.0696 0.106 0.1041 0.1107 0.0931 0.0732 0.0739 0.113 0.069];
x3e = 1 - x1e - x2e;
%eksperimentalni podatci - rafinat
x1r = [0.689 0.6289 0.485 0.4727 0.4332 0.6831 0.6967 0.6553 0.4507 0.6139];
x2r = [0.275 0.2855 0.4418 0.3501 0.4056 0.313 0.2716 0.271 0.4436 0.253];
x3r = 1 - x1r - x2r;
%Optimizacija NRTL parametara - Metoda Sorensena i Arlta
%1. stupanj optimizacije - opis fazne ravnoteze - geneticki algoritam
%parametri neslucajnosti
alfa12 = 0.3;
alfa13 = 0.3;
alfa23 = 0.2;
rng default
%poziv funkcije cilja
OF_A = @OF_2_6H_60C;
%definiranje strukture problema
problem.fitnessfcn = OF_A;
problem.nvars = 6;
problem.options = optimoptions('ga');
[x,fval] = ga(problem)
This is function I called in main code.
function [OF2] = OF_2_6H_60C(tau12,tau13,tau21,tau23,tau31,tau32)
global x1e x2e x3e x1r x2r x3r alfa12 alfa13 alfa23
syms tau12 tau13 tau21 tau23 tau31 tau32
G12 = exp(-alfa12*tau12);
G13 = exp(-alfa13*tau13);
G21 = exp(-alfa12*tau21);
G23 = exp(-alfa23*tau23);
G31 = exp(-alfa13*tau31);
G32 = exp(-alfa23*tau32);
A1e = (x2e.*tau21*G21 + x3e.*tau31*G31)./(x1e + x2e.*G21 + x3e.*G31) + (((x1e./(x1e + x2e.*G21 + x3e.*G31)).*(-(x2e.*tau21*G21 + x3e.*tau31*G31)./(x1e + x2e.*G21 + x3e.*G31))) + ((x2e.*G12)./(x1e.*G12 + x2e + x3e.*G32)).*(tau21 - (x1e.*tau12*G12 + x3e.*tau32*G32)./(x1e.*G12 + x2e + x3e.*G32))) + ((x3e.*G13./(x1e.*G13 + x2e.*G23 + x3e)).*(tau31 - (x1e.*tau13*G13 + x2e.*tau23*G23)./(x1e.*G13 + x2e.*G23 + x3e)));
gamma1e = exp(A1e);
A2e = (x1e.*tau12*G12 + x3e.*tau32*G32)./(x1e.*G12 + x2e + x3e.*G32) + ((x1e.*G21./(x1e + x2e.*G21 + x3e.*G31)).*(tau12 - (x2e.*tau21*G21 + x3e.*tau31*G31)./(x1e + x2e.*G21 + x3e.*G31))) + ((x2e./(x1e.*G12 + x2e + x3e.*G32)).*(-(x1e.*tau12*G12 + x3e.*tau32*G32)./(x1e.*G12 + x2e + x3e.*G32))) + ((x3e.*G23./(x1e.*G13 + x2e.*G23 + x3e)).*(tau32 - (x1e.*tau13*G13 + x2e.*tau23*G23)./(x1e.*G13 + x2e.*G23 + x3e)));
gamma2e = exp(A2e);
A3e = (x1e.*tau13*G13 + x2e.*tau23*G23)./(x1e.*G13 + x2e.*G23 + x3e) + ((x1e.*G21./(x1e + x2e.*G21 + x3e.*G31)).*(tau13 - (x2e.*tau21*G21 + x3e.*tau31*G31)./(x1e + x2e.*G21 + x3e.*G31))) + ((x2e.*G32./(x1e.*G12 + x2e + x3e.*G32)).*(tau23 - (x1e.*tau12*G12)./(x1e.*G12 + x2e + x3e.*G32))) + ((x3e./(x1e.*G13 + x2e.*G23 + x3e)).*(-(x1e.*tau13*G13 + x2e.*tau23*G23)./(x1e.*G13 + x2e.*G23 + x3e)));
gamma3e = exp(A3e);
A1r = (x2r.*tau21*G21 + x3r.*tau31*G31)./(x1r + x2r.*G21 + x3r.*G31) + ((x1r./(x1r + x2r.*G21 + x3r.*G31)).*(-(x2r.*tau21*G21 + x3e.*tau31*G31)./(x1r + x2r.*G21 + x3r.*G31))) + ((x2r.*G12)./(x1r.*G12 + x2r + x3e.*G32)).*(tau21 - ((x1r.*tau12*G12 + x3r.*tau32*G32)./(x1r.*G12 + x2r + x3r.*G32))) + ((x3r.*G13./(x1r.*G13 + x3r)).*(tau31 - (x1r.*tau13*G13 + x2r.*tau23*G23)./(x1r.*G13 + x2r.*G23 + x3r)));
gamma1r = exp(A1r);
A2r = (x1r.*tau12*G12 + x3r.*tau32*G32)./(x1r.*G12 + x2r + x3r.*G32) + ((x1r.*G21./(x1r + x2r.*G21 + x3r.*G32)).*(tau12 - (x2r.*tau21.*G21 + x3r.*tau31*G31)./(x1r + x2r.*G21 + x3r.*G31))) + ((x2r./(x1r.*G12 + x2r + x3r.*G32)).*(-(x1r.*tau12*G12 + x3r.*tau32*G32)./(x1r.*G12 + x2r + x3r.*G32))) + ((x3r.*G23./(x1r.*G13 + x2r.*G23 + x3r)).*(tau32 - (x1r.*tau13*G13 + x2r.*tau23*G23 + x3r)));
gamma2r = exp(A2r);
A3r = (x1r.*tau13*G13 + x2r.*tau23*G23)./(x1r.*G13 + x2r.*G23 + x3r) + ((x1r.*G31./(x1r + x2r.*G21 + x3r.*G31)).*(tau13 - (x2r.*tau21*G21 + x3r.*tau31*G31)./(x1r + x2r.*G21 + x3r.*G31))) + ((x2r.*G32./(x1r.*G12 + x2r + x3r.*G32)).*(tau23 - (x1r.*tau12*G12)./(x1r.*G12 + x2r + x3r.*G32))) + ((x3r./(x1r.*G13 + x2r.*G23 + x3r)).*(-(x1r.*tau13*G13 + x2r.*tau23*G23)./(x1r.*G13 + x2r.*G23 + x3r)));
gamma3r = exp(A3r);
for i = 1:10
A(i)=((x1e(i)*gamma1e(i) - x1r(i)*gamma1r(i))/(x1e(i)*gamma1e(i) + x1r(i)*gamma1r(i))^2) + ((x2e(i)*gamma2e(i) - x2r(i)*gamma2r(i))/(x2e(i)*gamma2e(i) + x2r(i)*gamma2r(i))^2) + ((x3e(i)*gamma3e(i) - x3r(i)*gamma3r(i))/(x3e(i)*gamma3e(i) + x3r(i).*gamma3r(i))^2);
end
F2 = sum(A,'all');
OF2 = matlabFunction(F2)
end
5 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Surrogate Optimization finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!