Highlight peaks/dents in a heatmap imagesc()

10 Ansichten (letzte 30 Tage)
Konvictus177
Konvictus177 am 15 Jan. 2022
Kommentiert: Oliver Tolfts am 2 Mär. 2023
Hi,
I am creating an image based on laser distance data (z) that I am collecting using imagesc(x,y,z). This gives me a heatmap/surface map of my object.
How can I automatically highlight the peaks/dents in this map or areas where z is higher/lower than a user defined threshold? I would like to create a circle around that area that has values higher or lower than a threshold or highlight those areas in any other way.
Thanks!
  2 Kommentare
yanqi liu
yanqi liu am 17 Jan. 2022
yes,sir,may be upload your data to do some analysis
Konvictus177
Konvictus177 am 17 Jan. 2022
Bearbeitet: Konvictus177 am 17 Jan. 2022
Imagine you have the following data set:
Z = peaks;
x = linspace(0,2*pi);
y = linspace(0,2*pi);
figure
imagesc(x,y,Z)
Now I want the user to set a threshold value for Z interactively and create contour lines for everything either lower or higher than what the user has set as a threshold.
Thanks.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Mathieu NOE
Mathieu NOE am 18 Jan. 2022
hello
a very simple code that combines surf and contour (will not draw a circle but maybe it's still a valuable solution)
[X,Y,Z] = peaks(100);
figure(1),hold on
s = surf(X,Y,Z,'Facealpha',0.75,'Edgecolor','none');
view(2);
colorbar('vert');
threshold = 0.3*max(Z,[],'all');
[c,h] = contour(X,Y,Z,[threshold threshold],'-k','Linewidth',5);
hold off
  5 Kommentare
Image Analyst
Image Analyst am 19 Jan. 2022
Use App Designer to make a GUI. I'm sure there is a tutorial on that somewhere.
Konvictus177
Konvictus177 am 22 Jan. 2022
Yes, will do. Thanks!

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (1)

Image Analyst
Image Analyst am 17 Jan. 2022
Use imregionalmax():
Z = mat2gray(peaks);
x = linspace(0,2*pi);
y = linspace(0,2*pi);
subplot(2, 2, 1);
imagesc(x,y,Z)
axis('on', 'image')
% get regional max:
peaks = imregionalmax(Z);
subplot(2, 2, 2);
imshow(peaks, []);
% Overlay it on the original
rgbImage = imoverlay(Z, peaks, 'r');
subplot(2, 2, 3);
imshow(rgbImage);
Now that you have the locations, you can get the values at those locations and set up thresholded images, one for each peak. Then use bwboundaries() to get all the contours and use inpolygon to figure out which contours contain each point. Not hard at all, so I imagine you can do that part yourself, right? Here's my version:
% Initialization steps.
clc; % Clear the command window.
close all; % Close all figures (except those of imtool.)
clear; % Erase all existing variables. Or clearvars if you want.
workspace; % Make sure the workspace panel is showing.
format long g;
format compact;
fontSize = 20;
Z = mat2gray(peaks);
x = linspace(0,2*pi);
y = linspace(0,2*pi);
subplot(2, 2, 1);
imagesc(x,y,Z)
impixelinfo;
axis('on', 'image')
% get regional max:
peaks = imregionalmax(Z);
% Some may have flat tops, so get down to a single point on each peak.
peaks = bwulterode(peaks);
subplot(2, 2, 2);
imshow(peaks, []);
% Overlay it on the original
rgbImage = imoverlay(Z, peaks, 'r');
subplot(2, 2, 3);
imshow(rgbImage);
impixelinfo;
% Get values of the peaks.
values = unique(Z(peaks))
% Get locations of the peaks.
[yp, xp] = find(peaks)
% Get contours
deltaz = 0.05;
subplot(2, 2, 4);
imshow(peaks, []);
hold on;
for k = 1 : length(values)
mask = Z > (values(k) - deltaz);
% imshow(mask);
boundaries = bwboundaries(mask);
thisx = xp(k);
thisy = yp(k);
plot(thisx, thisy, 'r+', 'MarkerSize', 20)
if ~isempty(boundaries)
for k2 = 1 : length(boundaries)
thisBoundary = boundaries{k2};
x = thisBoundary(:, 2);
y = thisBoundary(:, 1);
pointIsInside = inpolygon(thisx, thisy, x, y);
if pointIsInside
plot(x, y, '-', 'LineWidth', 2);
end
end
end
end
  2 Kommentare
yanqi liu
yanqi liu am 18 Jan. 2022
yes,sir,it is great idea,use imregionalmax to get region max and clear boarder,may be use to watermark segment
Oliver Tolfts
Oliver Tolfts am 2 Mär. 2023
@Image Analyst, >20% of the graphs of my Ph.D were plotted using your help. Thank you for sharing all your knowledge of Matlab.
thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Measurements and Spatial Audio finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by