Info

Diese Frage ist geschlossen. Öffnen Sie sie erneut, um sie zu bearbeiten oder zu beantworten.

How to create chaotic sequence by lorenz maps and fourth-order Runge– Kutta method?

1 Ansicht (letzte 30 Tage)
Arshub
Arshub am 28 Dez. 2021
Geschlossen: John D'Errico am 28 Dez. 2021
How to create chaotic sequence from equation bellow by fourth-order Runge– Kutta method and what does "S (i) "mean?
suppos x0,y0,z0,w0 any initial values.
Lorenz system is a 3-D continuous chaotic system, and it is given by Eq. (1):
x˙ = a (y − x)
y˙ = cx − y − xz
z˙ = xy − bz
where a, b and c are parameters of the chaotic system, system is going to be chaotic. By adding a nonlinear when parameters a = 10, b = 8/3, and c = 28, the Lorenz system is going to be chaotic. By adding a controller ˙w =−yz + γw to Eq. (1), hyper-chaotic Lorenz system is given by:
x˙ = a (y − x) +w
y˙ = cx − y − xz
z˙ = xy − bz
w˙ =−yz + γw
where a, b, c and γ are parameters of hyper-chaotic system. When system parameters a = 10, b = 8/3, c = 28 andγ ∈ [−1.52,−0.06],
Under the initial conditions x0, y0, z0 and w0,Eq. (2) iterated by using fourth-order Runge– Kutta method with 0.002 step size, and the iteration of x is denoted asX. The key stream S generated by iteration sequence X as:
S (i) = mod( fix (X (i) + 100) *(10^16),256)
where mod (a, b) means the remainder of a/b,fix(a) takes the integer part of a, i is the serial number of elements in the sequences S and X.

Antworten (0)

Diese Frage ist geschlossen.

Produkte


Version

R2014a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by