Hankel function, mathematical definition
34 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Kevin ROUARD
am 11 Dez. 2021
Kommentiert: Rik
am 20 Dez. 2021
Hello everyone,
I'm wonder about the besselh(.) function.
The definition given is,
H = besselh(nu,K,Z,scale) specifies whether to scale the Hankel function to avoid overflow or loss of accuracy. If scale is 1, then Hankel functions of the first kind H(1)ν(z) are scaled by e−iZ, and Hankel functions of the second kind H(2)ν(z) are scaled by e+iZ.
But I found that (in eq. 12.140-2, Weber & Arfken, 2003)
Hankel first kind: 
Hankel second kind: 
That mean H(1)ν(z) correspond to
and H(2)ν(z) correspond to
? and why that is inverted so ?
and H(2)ν(z) correspond to Thank you.
3 Kommentare
Stephen23
am 20 Dez. 2021
Hankel function, mathematical definition
Hello everyone,
I'm wonder about the besselh(.) function.
The definition given is,
H = besselh(nu,K,Z,scale) specifies whether to scale the Hankel function to avoid overflow or loss of accuracy. If scale is 1, then Hankel functions of the first kind H(1)ν(z) are scaled by e−iZ, and Hankel functions of the second kind H(2)ν(z) are scaled by e+iZ.
But I found that (in eq. 12.140-2, Weber & Arfken, 2003)
Hankel first kind: 
Hankel second kind: 
That mean H(1)ν(z) correspond to and H(2)ν(z) correspond to ? and why that is inverted so ?
Thank you.
Akzeptierte Antwort
David Goodmanson
am 12 Dez. 2021
Bearbeitet: David Goodmanson
am 12 Dez. 2021
Hi Kevin,
The hankel functions h that you cited are spherical hankel functions, which have half-integer order and are related to the regular hankel function H by
h(n,1,z) = const/sqrt(z)*H(n+1/2,1,z) % first kind
h(n,2,z) = const/sqrt(z)*H(n+1/2,2,z) % second kind
where
H(m,1,z) = besselh(m,1,z)
H(m,2,z) = besselh(m,2,z)
To the best of my knowledge (I have 2019b), spherical bessel functions still are not a part of core Matlab.
Those details do not change the basic question about normalization. For large z,
besselh(m,1,z) --> const/sqrt(z)*exp(i*z) as |z| --> inf
besselh(m,2,z) --> const/sqrt(z)*exp(-i*z) as |z| --> inf
so the first kind goes like exp(i*z) and the second kind goes like exp(-i*z) as you said.
For larger but not overly large z, the factor in front is a slowly varying function that goes over to const/sqrt(z) in the limit.
Including scaling just means that the bessel function of the first kind is multiplied by exp(-i*z) to make the known exponential factor go away, leaving the slowly varying function. Similarly for the second kind.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Bessel functions finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!