Error in ODE arguments

16 Ansichten (letzte 30 Tage)
Alexander Salas
Alexander Salas am 7 Dez. 2021
Bearbeitet: Jan am 7 Dez. 2021
Hello,
I am a newbie at MATLAB and I am trying to get a forcing function to work. I can get it to work without the F(t)/M but once I add it, it says error in ODE arguments:
clear
close all
% System parameters
m1 = 2000; Icg = 2500; % kg
c1 = 3000; c2 = 3000; % kg/s
k1 = 30000; k2 = 30000; % N/m
l1 = 1; l2 = 1.5;
M = [m1 0
0 Icg];
C = [(c1+c2) (c1*l1-c2*l2)
(c1*l1-c2*l2) ((c2*l2^2)+(c1*l1^2))];
K = [(k1+k2) (k1*l1-k2*l2)
(k1*l1-k2*l2) ((k2*l2^2)+(k1*l1^2))];
Br = [k1 k2
k1*l1 -k2*l2];
Brdot = [c1 c2
c1*l1 -c2*l2];
r = [.015 .015]';
r1 = [.086 .086]';
F = @(t) Br*r + Brdot*r1;
% Time grid
t0 = 0; tf = 10; dt = 0.01; t = t0:dt:tf;
% Set initial state and integrate equations of motion
s0 = [1 1 0 0]';
f = @(t,s) [s(3);s(4);(F(t)/M)*-C/M*[s(3) s(4)]'-K/M*[s(1) s(2)]'];
[t,s] = ode45(f,t,s0);
% Plot system motion
figure
subplot(211),plot(t,s(:,1),t,s(:,2),'LineWidth',2)
grid minor
legend('x1','x2')
xlabel('Time (s)')
ylabel('Displacements (m)')
title('System Dynamic Response')
subplot(212),plot(t,s(:,3),t,s(:,4),'LineWidth',2)
grid minor
legend('v1','v2')
xlabel('Time (s)')
ylabel('Velocity (m/s)')
  4 Kommentare
Alexander Salas
Alexander Salas am 7 Dez. 2021
Jan
Jan am 7 Dez. 2021
This is no valid Matlab syntax:
M = [m1 0
0 Icg];
The blank line in the code is not allowed. Therefore I asked you to remove the blank lines.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Alan Stevens
Alan Stevens am 7 Dez. 2021
I suspect you mean like this (notice the way M divides, using the back-slash):
% Numerical solution of IVP
% M*xddot + C*xdot + K*x = F(t) with x(0) = x0 and xdot(0) = v0
% System parameters
m1 = 2000; Icg = 2500; % kg
c1 = 3000; c2 = 3000; % kg/s
k1 = 30000; k2 = 30000; % N/m
l1 = 1; l2 = 1.5;
M = [m1 0
0 Icg];
C = [(c1+c2) (c1*l1-c2*l2)
(c1*l1-c2*l2) ((c2*l2^2)+(c1*l1^2))];
K = [(k1+k2) (k1*l1-k2*l2)
(k1*l1-k2*l2) ((k2*l2^2)+(k1*l1^2))];
Br = [k1 k2
k1*l1 -k2*l2];
Brdot = [c1 c2
c1*l1 -c2*l2];
r = [.015 .015]';
r1 = [.086 .086]';
F = @(t) (Br*r) + (Brdot*r1);
% Time grid
t0 = 0; tf = 10; dt = 0.01; t = t0:dt:tf;
% Set initial state and integrate equations of motion
s0 = [1 1 0 0]';
f = @(t,s) [s(3);s(4);M\F(t)-M\C*[s(3) s(4)]'-M\K*[s(1) s(2)]']; %%%%%%%%%%%%%%
[t,s] = ode45(f,t,s0);
% Plot system motion
figure
subplot(211),plot(t,s(:,1),t,s(:,2),'LineWidth',2)
grid minor
legend('x1','x2')
xlabel('Time (s)')
ylabel('Displacements (m)')
title('System Dynamic Response')
subplot(212),plot(t,s(:,3),t,s(:,4),'LineWidth',2)
grid minor
legend('v1','v2')
xlabel('Time (s)')
ylabel('Velocity (m/s)')
  1 Kommentar
Jan
Jan am 7 Dez. 2021
Bearbeitet: Jan am 7 Dez. 2021
A further simplification:
f = @(t,s) [s(3); s(4); M \ F(t) - M \ C * s(3:4) - M \ K * s(1:2)];

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Tags

Produkte


Version

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by