How to plot a 3D cube based if i have the coordinates of the 8 surrounding nodes?
278 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Dimitris K
am 3 Nov. 2021
Beantwortet: Eric
am 25 Jul. 2024
Hello community,
I want to plot a 3d cube based on the coordinates of my geometry (8 nodes). The coordinates of my cube are:
coord=[0 0 0;
0.5 0 0;
0.5 0.5 0;
0 0.5 0;
0 0 0.5;
0.5 0 0.5;
0.5 0.5 0.5;
0 0.5 0.5;];
Thanks a lot in advance.
0 Kommentare
Akzeptierte Antwort
Kelly Kearney
am 4 Nov. 2021
To expand on Star Strider's answer, in your example, you've specified a list of coordinates, but you haven't told Matlab how they should be connected. Based on your original example, the following array of row indices defines the faces of your cube:
coord = [...
0 0 0;
0.5 0 0;
0.5 0.5 0;
0 0.5 0;
0 0 0.5;
0.5 0 0.5;
0.5 0.5 0.5;
0 0.5 0.5;];
idx = [4 8 5 1 4; 1 5 6 2 1; 2 6 7 3 2; 3 7 8 4 3; 5 8 7 6 5; 1 4 3 2 1]';
To plot, substitute the coordinates:
xc = coord(:,1);
yc = coord(:,2);
zc = coord(:,3);
ax(1) = subplot(2,1,1);
patch(xc(idx), yc(idx), zc(idx), 'r', 'facealpha', 0.1);
view(3);
% Deformed
coord2 = coord + rand(size(coord))*0.1;
xc = coord2(:,1);
yc = coord2(:,2);
zc = coord2(:,3);
ax(2) = subplot(2,1,2);
patch(xc(idx), yc(idx), zc(idx), 'r', 'facealpha', 0.1);
view(3);
7 Kommentare
Kelly Kearney
am 5 Nov. 2021
Bearbeitet: Kelly Kearney
am 5 Nov. 2021
Those numbers indicate that your deformations are about 6 orders of magnitude smaller than the cube edge lengths... so yeah, that won't be visible to the naked eye. If you just want to use this as a visual aid, then I suppose you could scale up the deformations, although then you lose the "real" aspect ratio of the cube. To sync the axes, just set the axis limits appropriately:
% Original cube
coord = [...
0 0 0;
0.5 0 0;
0.5 0.5 0;
0 0.5 0;
0 0 0.5;
0.5 0 0.5;
0.5 0.5 0.5;
0 0.5 0.5;];
idx = [4 8 5 1 4; 1 5 6 2 1; 2 6 7 3 2; 3 7 8 4 3; 5 8 7 6 5; 1 4 3 2 1]';
% Deformed cube
coord2 = [...
0 0 0
0.500001990189944 0 0
0.500001990189944 0.500001990189944 0
0 0.500001990189944 0
0 0 0.499993366033520
0.500001990189944 0 0.499993366033520
0.500001990189944 0.500001990189944 0.499993366033520
0 0.500001990189944 0.499993366033520];
% Deformation
dc = coord - coord2;
% Plot
ax(1) = subplot(1,2,1);
patch('vertices', coord, 'faces', idx', 'facecolor', 'r', 'facealpha', 0.1);
view(3);
ax(2) = subplot(1,2,2);
patch('vertices', coord+dc*1e5, 'faces', idx', 'facecolor', 'r', 'facealpha', 0.1);
view(3);
lim = [-0.1 0.6];
set(ax, 'xlim', [-0.1 0.6], ...
'ylim', [-0.1 0.6], ...
'zlim', [-0.1 1.2], ...
'dataaspectratio', [1 1 1]); % last one same as "axis equal"
Weitere Antworten (1)
Eric
am 25 Jul. 2024
Another route using the 'surf' function:
x = 0.5*[ 1 1 1 1 1; 1 1 -1 -1 1;1 1 -1 -1 1;1 1 1 1 1];
y = 0.5*[ 1 -1 -1 1 1; 1 -1 -1 1 1;1 -1 -1 1 1;1 -1 -1 1 1];
z = 0.5*[-1 -1 -1 -1 -1;-1 -1 -1 -1 -1;1 1 1 1 1;1 1 1 1 1];
% Plow
fig = figure("Name","cube");
surf(x,y,z,'FaceColor','g')
set(fig.CurrentAxes,"XLim",[-1 1],"YLim",[-1 1],"ZLim",[-1 1]);
xlabel("x")
ylabel("y")
zlabel("z")
0 Kommentare
Siehe auch
Kategorien
Mehr zu Axes Appearance finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!