How to plot a multivariable function with constraints
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello,
I plotted a 2-variables function and I would like to highlight (or plot/intersect) only the z points for which x (k in the function) and y satisfy the following constraints: 250020*((pi/4)*k^2*y)-325.33=0
I have been trying several approaches but I cannot make it happen. I hope you can help.
Thank you!
f=@(k,y) (8120*(((pi*((((k+(2*(5*0.0026))+(2*0.0026))+(((pi*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(8*0.97*2.350))*2)+((4.5*(((pi*(k+(2*(5*0.0026))+(2*0.0026)))/24)-((2*pi()*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(24*0.97*2.350))))*2)).^2)-((((k+(2*(5*0.0026))+(2*0.0026))+(((pi*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(8*0.97*2.350))*2)+((4.5*(((pi*(k+(2*(5*0.0026))+(2*0.0026)))/24)-((2*pi()*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(24*0.97*2.350))))*2))-(2*((pi*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(8*0.97*2.350)))).^2))*y)/4)+(((2*pi()*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(24*0.97*2.350))*(4.5*(((pi*(k+(2*(5*0.0026))+(2*0.0026)))/24)-((2*pi()*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(24*0.97*2.350))))*y.*24)))+(8120*(pi*((k.^2)-((k-(2*((pi*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(8*0.97*2.350)))).^2))*y)/4)+(7450*((pi*y.*(((k+(2*(5*0.0026))).^2)-(k.^2)))/4)+(8933*pi*(0.003/2).^2*((15*(2*4))*((2*y)+((2*(pi*((k+(2*(5*0.0026))+(2*0.0026))+(4.5*(((pi*(k+(2*(5*0.0026))+(2*0.0026)))/24)-((2*pi()*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(24*0.97*2.350)))))))/8)+(4*(((pi*((k+(2*(5*0.0026))+(2*0.0026))+(4.5*(((pi*(k+(2*(5*0.0026))+(2*0.0026)))/24)-((2*pi()*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(24*0.97*2.350))))))/24)-((2*pi()*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(24*0.97*2.350))))))*3));
fsurf(f);
xlim([0.02 0.1]);
ylim([0.04 0.4]);
zlim([0 100]);
0 Kommentare
Antworten (1)
John D'Errico
am 28 Aug. 2021
Can you solve for y, as a function of k, given the constraint? (YES.)
If so, then do you really have a TWO variable problem? (NO.)
syms k y
ysol = solve(250020*((pi/4)*k^2*y)-325.33==0,y)
z = (8120*(((pi*((((k+(2*(5*0.0026))+(2*0.0026))+(((pi*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(8*0.97*2.350))*2)+((4.5*(((pi*(k+(2*(5*0.0026))+(2*0.0026)))/24)-((2*pi()*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(24*0.97*2.350))))*2)).^2)-((((k+(2*(5*0.0026))+(2*0.0026))+(((pi*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(8*0.97*2.350))*2)+((4.5*(((pi*(k+(2*(5*0.0026))+(2*0.0026)))/24)-((2*pi()*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(24*0.97*2.350))))*2))-(2*((pi*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(8*0.97*2.350)))).^2))*y)/4)+(((2*pi()*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(24*0.97*2.350))*(4.5*(((pi*(k+(2*(5*0.0026))+(2*0.0026)))/24)-((2*pi()*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(24*0.97*2.350))))*y.*24)))+(8120*(pi*((k.^2)-((k-(2*((pi*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(8*0.97*2.350)))).^2))*y)/4)+(7450*((pi*y.*(((k+(2*(5*0.0026))).^2)-(k.^2)))/4)+(8933*pi*(0.003/2).^2*((15*(2*4))*((2*y)+((2*(pi*((k+(2*(5*0.0026))+(2*0.0026))+(4.5*(((pi*(k+(2*(5*0.0026))+(2*0.0026)))/24)-((2*pi()*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(24*0.97*2.350)))))))/8)+(4*(((pi*((k+(2*(5*0.0026))+(2*0.0026))+(4.5*(((pi*(k+(2*(5*0.0026))+(2*0.0026)))/24)-((2*pi()*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(24*0.97*2.350))))))/24)-((2*pi()*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(24*0.97*2.350))))))*3));
z_k = subs(z,y,ysol)
It may look messy, but who cares?
fplot(z_k,[0.02,0.1])
xlabel 'k'
ylabel 'z'
Again, this is not a 2 variable problem, due to the constraint.
Can you plot it in 3-dimensions anyway? Well, yes.
K = linspace(0.02,0.1,100);
yfun = matlabFunction(ysol);
Y = yfun(K);
f = @(k,y) (8120*(((pi*((((k+(2*(5*0.0026))+(2*0.0026))+(((pi*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(8*0.97*2.350))*2)+((4.5*(((pi*(k+(2*(5*0.0026))+(2*0.0026)))/24)-((2*pi()*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(24*0.97*2.350))))*2)).^2)-((((k+(2*(5*0.0026))+(2*0.0026))+(((pi*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(8*0.97*2.350))*2)+((4.5*(((pi*(k+(2*(5*0.0026))+(2*0.0026)))/24)-((2*pi()*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(24*0.97*2.350))))*2))-(2*((pi*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(8*0.97*2.350)))).^2))*y)/4)+(((2*pi()*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(24*0.97*2.350))*(4.5*(((pi*(k+(2*(5*0.0026))+(2*0.0026)))/24)-((2*pi()*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(24*0.97*2.350))))*y.*24)))+(8120*(pi*((k.^2)-((k-(2*((pi*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(8*0.97*2.350)))).^2))*y)/4)+(7450*((pi*y.*(((k+(2*(5*0.0026))).^2)-(k.^2)))/4)+(8933*pi*(0.003/2).^2*((15*(2*4))*((2*y)+((2*(pi*((k+(2*(5*0.0026))+(2*0.0026))+(4.5*(((pi*(k+(2*(5*0.0026))+(2*0.0026)))/24)-((2*pi()*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(24*0.97*2.350)))))))/8)+(4*(((pi*((k+(2*(5*0.0026))+(2*0.0026))+(4.5*(((pi*(k+(2*(5*0.0026))+(2*0.0026)))/24)-((2*pi()*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(24*0.97*2.350))))))/24)-((2*pi()*((k+(2*(5*0.0026)))/2)*((1.49*(5*0.0026))/((5*0.0026)+0.0026)))/(24*0.97*2.350))))))*3));
f = str2func(vectorize(func2str(f)));
plot3(K,Y,f(K,Y),'o-')
grid on
box on
xlabel 'k'
ylabel 'y'
zlabel 'z'
4 Kommentare
Siehe auch
Kategorien
Mehr zu Robotics and Mechatronics finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!



