How can I find the Y value on an X–Y plot that corresponds to the tangent of the flattest part of a curve?

4 Ansichten (letzte 30 Tage)
I have plots like the one attached. At Y >0, the curve plateaus (flattens) before it increases sharply. I need to find the Y value at which the plateau/flat area is flattest.
Does anyone know how to do this? I can't figure out a solution that gets the part of the curve that I want. Thank you.
  8 Kommentare
dpb
dpb am 23 Aug. 2021
@Srh Fwl -- You've still not precisely answered the Q? of just what it is you're after here...is it the end of the "real" initial floor or an inflection point later that is the subject?
Adam Danz
Adam Danz am 23 Aug. 2021
@Srh Fwl, looks like Star Strider demonstrated that idea in a comment below the answer. Notice that the dip in the red curve is at the location I think you're refering to. If you need additional specific help, you may want to clarify the foggy areas pointed out by dpb.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Star Strider
Star Strider am 22 Aug. 2021
T1 = readtable('https://www.mathworks.com/matlabcentral/answers/uploaded_files/718334/exampleData.txt')
T1 = 101×2 table
Var1 Var2 ____ ____ NaN 0 0.15 0 0.25 0 0.35 0 0.45 0 0.55 0 0.65 0 0.75 0 0.85 0 0.95 0 1.05 0 1.15 0 1.25 0 1.35 0 1.45 0 1.55 0
T1 = rmmissing(T1); % Remove 'NaN' Values
h = mean(diff(T1.Var1))
h = 0.1000
d2d1 = gradient(T1.Var2, h); % Numerical Derivative
flatidx = find(abs(d2d1)<1E-14); % Zero Slope (With Tolerance)
yflat = T1.Var2(flatidx)
yflat = 19×1
0 0 0 0 0 0 0 0 0 0
figure
plot(T1.Var1, T1.Var2)
hold on
plot(T1.Var1(flatidx), T1.Var2(flatidx), 'vr')
hold off
grid
legend('Data','Flat Section', 'Location','best')
This should also work with other data sets, although obviously I cannot test it with them.
.
  2 Kommentare
Srh Fwl
Srh Fwl am 23 Aug. 2021
@Star Strider, thank you very much. I apologize because my question wasn't clear enough. I need the y value of the flattest area at y >0. The curves start off with y close to 0 and it's where they again flatten (in my example, at y between 3 and 5) that I need the y value. Apologies.
Star Strider
Star Strider am 23 Aug. 2021
Set the conditions in the find call to match what you want to define.
T1 = readtable('https://www.mathworks.com/matlabcentral/answers/uploaded_files/718334/exampleData.txt')
T1 = 101×2 table
Var1 Var2 ____ ____ NaN 0 0.15 0 0.25 0 0.35 0 0.45 0 0.55 0 0.65 0 0.75 0 0.85 0 0.95 0 1.05 0 1.15 0 1.25 0 1.35 0 1.45 0 1.55 0
T1 = rmmissing(T1); % Remove 'NaN' Values
h = mean(diff(T1.Var1))
h = 0.1000
d2d1 = gradient(T1.Var2, h); % Numerical Derivative
flatidx = find((abs(d2d1)<1.0) & (T1.Var2 > 0)); % Define Slope Criteria (With Tolerance)
yflat = T1.Var2(flatidx)
yflat = 6×1
0.0000 0.0004 0.0030 0.0123 0.0395 0.0982
figure
plot(T1.Var1, T1.Var2)
hold on
plot(T1.Var1, d2d1)
plot(T1.Var1(flatidx), T1.Var2(flatidx), '.r')
hold off
grid
legend('Data', 'Numeircal Derivative', 'Flat Section', 'Location','best')
Make appropriate changes to get the result you want.
.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (1)

Turlough Hughes
Turlough Hughes am 23 Aug. 2021
Bearbeitet: Turlough Hughes am 23 Aug. 2021
How robust this is depends on the consistency of that initial pattern, i.e. the initial acceleration followed by a period of deceleration (starting to plateau) until the "flattest" point where it then begins to accelerate again. This point between the initial deceleration and acceleration is also known as an inflection point, as mentioned by @dpb. It's also the point where where y is closest to being parallel to the x-axis in the region (where it is initially plateauing).
To find the inflection point we find the location where . I understand you want the second one as follows:
T = readmatrix('https://www.mathworks.com/matlabcentral/answers/uploaded_files/718334/exampleData.txt');
x = T(:,1);
y = T(:,2);
subplot(2,1,1)
plot(x,y,'LineWidth',3)
ylabel('f(x)'), xlabel('x')
set(gca,'fontSize',12)
subplot(2,1,2)
ypp = gradient(gradient(y,x),x); % second derivative of y w.r.t. x
plot(x,ypp,'LineWidth',3);
ylabel('f''''(x)')
xlabel('x')
set(gca,'fontSize',12)
idx = ypp > 0;
hold on, plot(x(idx),ypp(idx),'or','LineWidth',2)
iFlat = find(diff(idx)==1)+1; % y is most linear when it's second derivate, ypp, is equal to 0
iInflect = iFlat(2); % the second time ypp becomes > 0 approximates the second inflection point.
plot(x(iInflect),ypp(iInflect),'sk','MarkerSize',10,'LineWidth',2)
subplot(2,1,1)
hold on, plot(x(iInflect),y(iInflect),'sk','MarkerSize',10,'LineWidth',2)
x(1:iInflect-1) = [];
y(1:iInflect-1) = [];
plot(x,y,'--r','LineWidth',2)
legend('Original Dataset','Second Inflection Point','New Dataset','Location','NorthWest')
  1 Kommentar
Srh Fwl
Srh Fwl am 24 Aug. 2021
Thank you very much, Turlough. Your solution does work but unfortunately I can only accept one answer and I put the first answerer through more inconvenience so chose that one. I appreciate your help.

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Data Preprocessing finden Sie in Help Center und File Exchange

Produkte


Version

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by