is there something similar to Excel Solver in Matlab?
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Andrew
am 10 Aug. 2011
Kommentiert: John C L Mayson II
am 2 Mai 2018
Hi, I have a similar problem. To simplify assume a linear equation y=mx+c. I have values for the independent variable x, the actual y and want to solve for coefficients m and c. Using Excel Solver I would use random initial values for m and c in my equation, and get a fitted y, say y_fit. Then work the sum of squared residuals between y and y_fit [RSS = sum((y-yfit)^2)]. Then tell Solver to give me a solution for m and c which minimises RSS. Is this possible in Matlab? Can I make use of the Optimisation tool box to do this?
0 Kommentare
Akzeptierte Antwort
Titus Edelhofer
am 10 Aug. 2011
Hi,
take a look at lsqcurvefit http://www.mathworks.com/help/toolbox/optim/ug/lsqcurvefit.html from Optimization Toolbox. It should do what you are looking for ...
Titus
2 Kommentare
John C L Mayson II
am 2 Mai 2018
Hi Andrew, I am a beginner in MATLAB and currently struggling with the same problem. I visited the link uploaded by Titus but still couldn't figure it out. I have a set of equations which obtains a variable "b". In one of those equations, I assumed a constant value for a variable "a". Now I want to set variable "b" to 0.01 by changing variable "a". Can you please help if you have the time?
Weitere Antworten (1)
Fangjun Jiang
am 10 Aug. 2011
From help robustfit.
x = (1:10)';
y = 10 - 2*x + randn(10,1); y(10) = 0;
bls = regress(y,[ones(10,1) x])
brob = robustfit(x,y)
scatter(x,y)
hold on
plot(x,brob(1)+brob(2)*x,'r-', x,bls(1)+bls(2)*x,'m:')
2 Kommentare
Fangjun Jiang
am 10 Aug. 2011
I am not following. If you assume y=m*x+c, it means linear and the result from regress() is the result of minimizing RSS. If you want to do for example, y=n*x^2+m*x+c, then you can use regress(y,[ones(10,1) x x.^2]). There is no need to do iteration.
Siehe auch
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!