Batman equation in MATLAB
44 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi folks,
I am looking for a smart way to implement the Batman equation in MATLAB:
I came up with this:
syms x y
eq1 = ((x/7)^2*sqrt(abs(abs(x)-3)/(abs(x)-3))+(y/3)^2*sqrt(abs(y+3/7*sqrt(33))/(y+3/7*sqrt(33)))-1);
eq2 = (abs(x/2)-((3*sqrt(33)-7)/112)*x^2-3+sqrt(1-(abs(abs(x)-2)-1)^2)-y);
eq3 = (9*sqrt(abs((abs(x)-1)*(abs(x)-.75))/((1-abs(x))*(abs(x)-.75)))-8*abs(x)-y);
eq4 = (3*abs(x)+.75*sqrt(abs((abs(x)-.75)*(abs(x)-.5))/((.75-abs(x))*(abs(x)-.5)))-y);
eq5 = (2.25*sqrt(abs((x-.5)*(x+.5))/((.5-x)*(.5+x)))-y);
eq6 = (6*sqrt(10)/7+(1.5-.5*abs(x))*sqrt(abs(abs(x)-1)/(abs(x)-1))-(6*sqrt(10)/14)*sqrt(4-(abs(x)-1)^2)-y);
axes('Xlim', [-7.25 7.25], 'Ylim', [-5 5]);
hold on
ezplot(eq1,[-8 8 -3*sqrt(33)/7 6-4*sqrt(33)/7]);
ezplot(eq2,[-4 4]);
ezplot(eq3,[-1 -0.75 -5 5]);
ezplot(eq3,[0.75 1 -5 5]);
ezplot(eq4,[-0.75 0.75 2.25 5]);
ezplot(eq5,[-0.5 0.5 -5 5]);
ezplot(eq6,[-3 -1 -5 5]);
ezplot(eq6,[1 3 -5 5]);
colormap([0 0 1])
title('Batman');
xlabel('');
ylabel('');
hold off
Any other ideas are welcome.
1 Kommentar
Oleg Komarov
am 5 Aug. 2011
I've submitted just less than a week ago the BATMAN equation to Martin Sona's question but he apparently deleted it (so much of my time...but cache is good)
Antworten (3)
Oleg Komarov
am 5 Aug. 2011
Bearbeitet: Walter Roberson
am 12 Jan. 2017
The "correct" version with explanations: http://math.stackexchange.com/questions/54506/is-this-batman-equation-for-real
% Grey axes
axes('Xlim' ,[-7 7] , 'Xtick' ,-7:7,...
'Ylim' ,[-5 5] , 'Ytick' ,-5:5,...
'YtickL','' , 'XtickL','' ,...
'Ygrid' ,'on' , 'Xgrid' ,'on',...
'Xcolor',[.8 .8 .8], 'Ycolor',[.8 .8 .8]);
hold on
% Outer wings
f1 = '(x/7)^2 * sqrt(abs(abs(x)-3)/(abs(x)-3)) + (y/3)^2 * sqrt(abs(y + 3/7*sqrt(33))/(y + 3/7*sqrt(33))) - 1';
ezplot(f1,[-8 8 -3*sqrt(33)/7 6-4*sqrt(33)/7]);
% Bottom
f2 = 'abs(x/2)-(3*sqrt(33)-7) * x^2/112 - 3 + sqrt(1-(abs(abs(x)-2)-1)^2) - y';
ezplot(f2,[-4 4]);
% Outer ears
f3 = '9 * sqrt(abs((1-abs(x))*(abs(x)-0.75)) / ((1-abs(x))*(abs(x)-0.75))) - 8*abs(x) - y';
ezplot(f3,[-1 -0.75 -5 5]);
ezplot(f3,[ 0.75 1 -5 5]);
% Inner ears
f4 = '3*abs(x) + 0.75*sqrt(abs((0.75-abs(x))*(abs(x)-.5)) / ((.75-abs(x))*(abs(x)-.5))) - y';
ezplot(f4,[-0.75 0.75 2.25 5]);
% Connect inner ears (flat line)
f5 = '2.25*sqrt(abs(((0.5-x)*(0.5+x))/((0.5-x)*(0.5+x)))) - y';
ezplot(f5,[-0.5 0.5 -5 5]);
% Inner wings
f6 = '6*sqrt(10)/7 + (1.5-0.5*abs(x)) * sqrt(abs(abs(x)-1) / (abs(x)-1)) - 6*sqrt(10)/14 * sqrt(4-(abs(x)-1)^2) - y';
ezplot(f6,[-3 -1 -5 5]);
ezplot(f6,[ 1 3 -5 5]);
% Change line color and width
set(get(gca,'children'),'Color','b','Linew',2)
% Title and labels
title('Batman'); xlabel(''); ylabel('')
% Superimpose black axes with xy-ticklabels
xlbl(1:15,1:2) = ' '; xlbl([1,8,15],:) = ['-7';' 0';' 7'];
ylbl(1:11,1:2) = ' '; ylbl([1,6,11],:) = ['-5';' 0';' 5'];
axes('Xlim' ,[-7 7], 'Xtick' ,-7:7,...
'Ylim' ,[-5 5], 'Ytick' ,-5:5,...
'YtickL',ylbl , 'XtickL',xlbl,...
'Box' ,'on' , 'Color' ,'none');
*EDIT*
The link shows that all the f# are multiplied and plotted but it doesn't work because ezplot somehow plots the real part of the imaginary numbers(?).
With the piecewise implementation only the core functions should be used (but I left the extended version so that others can copy):
f1 = '(x/7)^2 + (y/3)^2 - 1';
f2 = 'abs(x/2)-(3*sqrt(33)-7) * x^2/112 - 3 + sqrt(1-(abs(abs(x)-2)-1)^2) - y';
f3 = '9 - 8*abs(x) - y';
f4 = '3*abs(x) + 0.75 - y';
f5 = '2.25 + 0*x - y';
f6 = '6*sqrt(10)/7 + (1.5-0.5*abs(x)) - 6*sqrt(10)/14 * sqrt(4-(abs(x)-1)^2) - y';
The result:
3 Kommentare
Oleg Komarov
am 5 Aug. 2011
Upload it somewhere and then post the link included in <<http://...>>
There's a post on fex which is a collection of repositories.
Walter Roberson
am 5 Aug. 2011
The post listing a partial list of repositories is http://www.mathworks.com/matlabcentral/answers/7924-where-can-i-upload-images-and-files-for-use-on-matlab-answers
Sally Al Khamees
am 21 Feb. 2017
Starting MATLAB R2016b, you may use fimplicit function to plot the equations.Note that I used the Symbolic Math Toolbox to create the symbolic variables x and y.
syms x y
eq1 = ((x/7)^2*sqrt(abs(abs(x)-3)/(abs(x)-3))+(y/3)^2*sqrt(abs(y+3/7*sqrt(33))/(y+3/7*sqrt(33)))-1);
eq2 = (abs(x/2)-((3*sqrt(33)-7)/112)*x^2-3+sqrt(1-(abs(abs(x)-2)-1)^2)-y);
eq3 = (9*sqrt(abs((abs(x)-1)*(abs(x)-.75))/((1-abs(x))*(abs(x)-.75)))-8*abs(x)-y);
eq4 = (3*abs(x)+.75*sqrt(abs((abs(x)-.75)*(abs(x)-.5))/((.75-abs(x))*(abs(x)-.5)))-y);
eq5 = (2.25*sqrt(abs((x-.5)*(x+.5))/((.5-x)*(.5+x)))-y);
eq6 = (6*sqrt(10)/7+(1.5-.5*abs(x))*sqrt(abs(abs(x)-1)/(abs(x)-1))-(6*sqrt(10)/14)*sqrt(4-(abs(x)-1)^2)-y);
fimplicit([eq1, eq2, eq3, eq4, eq5, eq6],'Color','black','Linew',2)
xlim( [-7.25 7.25])
ylim([-5 5])
grid
2 Kommentare
Sama Elsayed
am 13 Dez. 2019
how can I make the batman sign a moving plot? like make it plot instead of just popping up when code is evaluted?
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!