Initial conditions on ODE45 ?
16 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Robin
am 30 Jul. 2011
Kommentiert: Pasindu Ranasinghe
am 22 Jul. 2021
Im trying to solve this IVP: e^y +(t*e^y - sin(y))*(dy/dt)=0 with the initial condition y(2)=1.5.
I was just not sure how to do it with the initial condition with Y(2)=1.5, iknow how to do it if it were y(0)=1.5:
f= @(t,y) (exp(y)+(t.*exp(y)-sin(y))); % This is the function.
[t,y]=ode45(f, [0.5,4], 1.5); % trange is from 0.5 to 4
plot(t,y)
can someone please help me out?
0 Kommentare
Akzeptierte Antwort
Jan
am 30 Jul. 2011
This uses the initial value y(0.5)=1.5 ( not y(0)=1.5):
[t, y] = ode45(f, [0.5, 4], 1.5);
So for y(2)=1.5:
[t, y] = ode45(f, [2, 4], 1.5);
Note: The initial value problem starts at the inital point.
[EDITED]: The call to ODE45 is equivalent, if the problem is formulated in backward direction - an "final value problem": tspan is still [ti, tf], but now ti > tf.
9 Kommentare
Pasindu Ranasinghe
am 22 Jul. 2021
Example Code

Use ode45() to find the approximate values of the solution at t in the range of 1 to 3
function ydot = eqns(t,y)
ydot=(t-exp(-t))/(y+exp(y));
end
###################################
%%Code
[t1,y1]=ode45(@eqns,[1.5 1], 0.5);
hold on;
[t2,y2]=ode45(@eqns,[1.5 3], 0.5);
hold off
t=[t1;t2];
y=[y1;y2];
plot(t,y,'-o')
Weitere Antworten (1)
Subha Fernando
am 26 Okt. 2011
let say function is dy/dt = y (t-y).
If initial condition is given at y(1) = 0.5 not at y(0) then we define the RHS as
function output = funcRHS(t, y) output = y *(t-y); end
%then u can call
hold on ode45('funcRHS', [1, -1], 0.5) ode45('funcRHS', [1,5], 0.5)
%Here you can see and read the initial value at y(0) also
0 Kommentare
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!