Post-Training Analysis (postreg)
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Ong Teng
am 5 Mär. 2014
Kommentiert: Chenguang Zhang
am 7 Mär. 2019
Hi,
Good Day!
May I know hows the calculation of the code below:
[m,b,r] = postreg(evu(r,:),ev);
I am now have a data set with 90(sample)x14(dimensions), can I know the calculation to get the value of m, b and r?
Thanks.
0 Kommentare
Akzeptierte Antwort
Chenguang Zhang
am 5 Mär. 2019
m表示实际值和预测值的拟合系数,越靠近1,表明二者越接近。
b表示实际值和预测值的拟合截距,越靠近0 ,表明效果越好。
r表示实际值和预测值的相关系数。
2 Kommentare
John D'Errico
am 5 Mär. 2019
With no disrespect intended, I've attached the efforts of Google Translate to help others who might read this answer:
m represents the fit coefficient of the actual value and the predicted value, and the closer to 1, the closer the two are.
b represents the fit intercept of the actual value and the predicted value. The closer to 0, the better the effect.
r represents the correlation coefficient between the actual value and the predicted value.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Classification finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!