matrix dimensions must agree

1 Ansicht (letzte 30 Tage)
Een Qurota Aini
Een Qurota Aini am 19 Nov. 2013
Beantwortet: Image Analyst am 27 Nov. 2013
Please help me i have a problem with my program neural network about matrix. What program should I add that the error disappear??
clc
clear all
%==========================================================================
% PENGOLAHAN CITRA
%==========================================================================
%histogram
jlhkelas = 3;
jlh = 20;
dir1 = 'training\';
%dir2 = 'testing\';
for kelas = 1:jlhkelas
for byk = 1:jlh
dir = strcat(dir1,int2str(kelas),'-',int2str(byk),'.jpg');
img=imread(dir);
imgred = img(:,:,1);
imggreen = img(:,:,2);
imgblue = img(:,:,3);
[row col dim]= size(img);
imgb = ones(row+2,col+2,3);
imgb = im2uint8(imgb);[row col dim]= size(img);
imgb = ones(row+2,col+2,3);
imgb = im2uint8(imgb);
for i = 1:row
for j = 1:col
imgb(i+1,j+1,1) = imgred(i,j);
imgb(i+1,j+1,2) = imggreen(i,j);
imgb(i+1,j+1,3) = imgblue(i,j);
end
end
%mengatur kecerahan gambar
OUTPUT = strcat(dir1,int2str(kelas),'-',int2str(byk),'.jpg');
a=rgb2gray(img);
a = imadjust(a,stretchlim(a),[]);
[row col] = size(a);
x = ones(row+2,col+2);
x = im2uint8(x);
for i =1:row
for j=1:col
x(i+1,j+1)= a(i,j);
end
end
%untuk mengubah gambar ke dalam bentuk nilai biner
gray=rgb2gray(img);
thresh=graythresh(gray);
imbw=im2bw(gray,thresh);
end
end
%==========================================================================
% PENENTUAN FITUR DARI DAUN KAKAO SEBAGAI INPUT KE JST
%==========================================================================
%Grayscale
baris = 1
for i = 1:jlhkelas
for j = 1:jlh
dir = strcat(dir1,int2str(i),'-',int2str(j),'.jpg');
I = imread(dir);
I = rgb2gray(I);
Ih = imhist(I);
Ih = Ih(20:220);
Ih(Ih == 0) = [];
%Mean
rata2 = mean(Ih);
%Standar Deviasi
sdeviasi = std(Ih);
%Kurtosis
K = kurtosis(Ih);
%Skewness
Sk = skewness(Ih);
[p,SI] = graycomatrix(I,'NumLevels',max(max(I))+1,'G',[]);
p(p==0) = [];
p = p/sum(p);
%Entropy
E = -sum((p).*log2(p));
MGray(baris,:) = [rata2 sdeviasi K Sk E];
%RGB Normalisasi
Image_rgb = imread(dir);
Image_rgb = double(Image_rgb);
Image_red = Image_rgb(:,:,1);
Image_green = Image_rgb(:,:,2);
Image_blue = Image_rgb(:,:,3);
[row,col] = size(Image_rgb(:,:,1));
for y = 1:row %-->numberof rows in image
for x = 1:col %-->number of columns in the image
Red = Image_red(y,x);
Green = Image_green(y,x);
Blue = Image_blue(y,x);
NormalizedRed = Red /sqrt(Red^2 + Green^2 + Blue^2);
NormalizedGreen = Green/sqrt(Red^2 + Green^2 + Blue^2);
NormalizedBlue = Blue /sqrt(Red^2 + Green^2 + Blue^2);
Image_red(y,x) = NormalizedRed;
Image_green(y,x) = NormalizedGreen;
Image_blue(y,x) = NormalizedBlue;
end
end
Image_rgb(:,:,1) = (Image_red);
Image_rgb(:,:,2) = (Image_green);
Image_rgb = Image_rgb(:,:,1).*Image_rgb(:,:,2);
Img = im2uint8(Image_rgb);
Imgb = im2double(Img);
Imgb = imhist (Imgb);
Imgb(Imgb==0) = [];
%MeanRGB
rata2RGB = mean(Imgb);
%Standar DeviasiRGB
sdeviasiRGB = std(Imgb);
%KurtosisRGB
KRGB = kurtosis(Imgb);
%SkewnessRGB
SkRGB = skewness(Imgb);
[p1,SI] = graycomatrix(Img,'NumLevels',max(max(Img))+1,'G',[]);
p1(p1==0) = [];
p1 = p1/sum(p1);
%EntropyRGB
ERGB = -sum((p1).*log2(p1));
MRGB(baris,:) = [rata2RGB sdeviasiRGB KRGB SkRGB ERGB];
%Pengaturan Kecerahan Image
a = I;
a = imadjust(a,stretchlim(a),[]);
[row col] = size(a);
x = ones(row+2,col+2);
x = im2uint8(x);
for in =1:row
for jn=1:col
x(in+1,jn+1)= a(in,jn);
end
end
%Level Saturasi4
Image_Sat = imread(dir);
hsv = rgb2hsv(Image_Sat);
s = hsv(:,:,2);
s = im2uint8(s);
shist = imhist(s);
shist = shist(20:220);
shist(shist == 0) = [];
%===========MeanSat
rata2Sat = mean(shist);
%===========Standar DeviasiSat
sdeviasiSat = std(shist);
%===========KurtosisSat
KSat = kurtosis(shist);
%===========SkewnessSat
SkSat = skewness(shist);
%===========EntropySat
[p3,SI] = graycomatrix(s,'NumLevels',max(max(s))+1,'G',[]);
p3(p3==0) = [];
p2 = p3/sum(p3);
ESat = -sum((p3).*log2(p3));
MSat(baris,:) = [rata2Sat sdeviasiSat KSat SkSat ESat];
baris = baris +1;
end
end
Hasil = [(1:baris-1)' MGray MRGB MSat];
P = ([MGray MRGB MSat])';
P = (P)/1e+002
T =[-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1];
% Preprocessing
[pn,meanp,stdp,tn,meant,stdt] = prestd(P,T);
% Membangun jaringan dengan propagasi umpan balik berbasis jaringan syaraf tiruan
net = newff(minmax(pn),[10 5 1],{'tansig' 'logsig' 'purelin'},'traingdm')
% melihat bobot awal jaringan
BobotAwal_Input = net.IW{1,1}
BobotAwal_Bias_Input = net.b{1,1}
BobotAwal_Lapisan1 = net.LW {2,1}
BobotAwal_Bias_Lapisan = net.b {2,1}
BobotAkhir_Lapisan2 = net.LW {3,2}
BobotAkhir_Bias_Lapisan2 = net.b{3,1}
% Set parameter pelatihan
net.trainParam.epochs = 1000;
net.trainParam.goal = 1e-04;
net.trainParam.lr = 0.6;
net.trainParam.showCommandLine = true;
net.trainParam.show = 100;
net.trainParam.mc = 0.7;
% Pelatihan
net = train(net,pn,tn);pause
% Melihat bobot akhir jaringan
BobotAkhir_Input = net.IW{1,1}
BobotAkhir_Bias_Input = net.b{1,1}
BobotAkhir_Lapisan1 = net.LW {2,1}
BobotAkhir_Bias_Lapisan = net.b {2,1}
BobotAkhir_Lapisan2 = net.LW {3,2}
BobotAkhir_Bias_Lapisan2 = net.b{3,1}
% Simulasi terhadap data pelatihan
an = sim(net,pn);
a = poststd(an,meant,stdt);
H = [(1:size(P,2))' T' a' (T'-a')];
sprintf('%2d %9.2f %7.2f %5.2f\n',H')
% Menggambar Grafik
[m1,a1,r1] = postreg(a,T)
pause;
plot ([1:size(P,2)]' ,T,'bo',[1:size(P,2)]',a','r*');
title('Hasil pengujian dengan data pelatihan Target (o) dan Output (*)');
xlabel('Data ke-');
ylabel('Target atau Output');
grid;
pause
%Input Data Baru
%Cek =load( 'TData.mat')
%Cek =load ('TData.mat','Q')
%Test =Q(:,1:30)';
%Q = 'TData.mat{(:,1:30)}';
Q = xlsread('data.xlsx');
TQ =[-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1];
%Normalisasi input baru
Qn = trastd(Q,meanp,stdp);
bn = sim(net,Qn);
b = poststd(bn,meant,stdt);
L = [(1:size (Q,2))' T' b' (TQ' -b')];
sprintf('%2d %11.2f %9.2f %7.2f\n', L')
%Evaluasi output jaringan (data testing dengan target)
[m2,b1,r2] = postreg(b,TQ)
pause
k = [1:size(Q,2)]';
plot(k,TQ,'bo',k,b','r*');
title('Perbandingan antara Target (o) dan Output Jaringan (*)');
xlabel('input kedua');
ylabel('Target atau Output');
grid;
text(k+0.2*ones(lenght(k),1),TQ,int2str(k));
error:
??? Error using ==> minus
Matrix dimensions must agree.
Error in ==> trastd at 75
pn = (p-meanp*oneQ)./(stdp*oneQ);
Error in ==> fix at 244
Qn = trastd(Q,meanp,stdp);
  4 Kommentare
Een Qurota Aini
Een Qurota Aini am 27 Nov. 2013
Bearbeitet: Een Qurota Aini am 27 Nov. 2013
thanks mr. Walter,but i'm not understand. please help me. help me how to find a solution to complete the program. What should I do and where I should start a program to fix it? please help me :'(
Image Analyst
Image Analyst am 27 Nov. 2013
You can also attach your m-file with the paper clip icon.

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Image Analyst
Image Analyst am 27 Nov. 2013
First look at this: http://blogs.mathworks.com/videos/2012/07/03/debugging-in-matlab/. Then, before the pn= line, put these commands.
whos p
whos meanp
whos oneQ
whos stdp
whos oneQ
Tell us what it says in the command window.

Kategorien

Mehr zu Descriptive Statistics and Visualization finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by