fresnels
Fresnel sine integral function
Syntax
Description
fresnels(
returns the Fresnel sine integral of
z
)z
.
Examples
Fresnel Sine Integral Function for Numeric and Symbolic Arguments
Find the Fresnel sine integral function for these numbers. Since these are not symbolic objects, you receive floating-point results.
fresnels([-2 0.001 1.22+0.31i])
ans = -0.3434 + 0.0000i 0.0000 + 0.0000i 0.7697 + 0.2945i
Find the Fresnel sine integral function symbolically by converting the numbers to symbolic objects:
y = fresnels(sym([-2 0.001 1.22+0.31i]))
y = [ -fresnels(2), fresnels(1/1000), fresnels(61/50 + 31i/100)]
Use vpa
to approximate the results:
vpa(y)
ans = [ -0.34341567836369824219530081595807, 0.00000000052359877559820659249174920261227,... 0.76969209233306959998384249252902 + 0.29449530344285433030167256417637i]
Fresnel Sine Integral for Special Values
Find the Fresnel sine integral function for special values:
fresnels([0 Inf -Inf i*Inf -i*Inf])
ans = 0.0000 + 0.0000i 0.5000 + 0.0000i -0.5000 + 0.0000i 0.0000 - 0.5000i... 0.0000 + 0.5000i
Fresnel Sine Integral for Symbolic Functions
Find the Fresnel sine integral for the function exp(x) +
2*x
:
syms x f = symfun(exp(x)+2*x,x); fresnels(f)
ans(x) = fresnels(2*x + exp(x))
Fresnel Sine Integral for Symbolic Vectors and Arrays
Find the Fresnel sine integral for elements of vector
V
and matrix M
:
syms x V = [sin(x) 2i -7]; M = [0 2; i exp(x)]; fresnels(V) fresnels(M)
ans = [ fresnels(sin(x)), fresnels(2i), -fresnels(7)] ans = [ 0, fresnels(2)] [ fresnels(1i), fresnels(exp(x))]
Plot Fresnel Sine Integral Function
Plot the Fresnel sine integral function from x = -5
to x = 5
.
syms x fplot(fresnels(x),[-5 5]) grid on
Differentiate and Find Limits of Fresnel Sine Integral
The functions diff
and
limit
handle expressions containing
fresnels
.
Find the fourth derivative of the Fresnel sine integral function:
syms x diff(fresnels(x),x,4)
ans = - 3*x*pi^2*sin((pi*x^2)/2) - x^3*pi^3*cos((pi*x^2)/2)
Find the limit of the Fresnel sine integral function as x tends to infinity:
syms x limit(fresnels(x),Inf)
ans = 1/2
Taylor Series Expansion of Fresnel Sine Integral
Use taylor
to expand the Fresnel sine integral
in terms of the Taylor series:
syms x taylor(fresnels(x))
ans = (pi*x^3)/6
Simplify Expressions Containing fresnels
Use simplify
to simplify expressions:
syms x simplify(3*fresnels(x)+2*fresnels(-x))
ans = fresnels(x)
Input Arguments
More About
Algorithms
The fresnels(z)
function is analytic throughout the complex plane. It
satisfies fresnels(-z) = -fresnels(z), conj(fresnels(z)) = fresnels(conj(z)), and fresnels(i*z) = -i*fresnels(z) for all complex values of z
.
fresnels(z)
returns special values for z = 0, z = ±∞, and z = ±i∞ which are 0, ±5, and ∓0.5i. fresnels(z)
returns symbolic function calls for all
other symbolic values of z
.
Version History
Introduced in R2014a