resume
Resume training of Gaussian kernel regression model
Syntax
Description
continues training with the same options used to train UpdatedMdl
= resume(Mdl
,X
,Y
)Mdl
,
including the training data (predictor data in X
and
response data in Y
) and the feature expansion. The training
starts at the current estimated parameters in Mdl
. The
function returns a new Gaussian kernel regression model
UpdatedMdl
.
continues training with the predictor data in UpdatedMdl
= resume(Mdl
,Tbl
,ResponseVarName
)Tbl
and the
true responses in Tbl.ResponseVarName
.
continues training with the predictor data in table UpdatedMdl
= resume(Mdl
,Tbl
,Y
)Tbl
and
the true responses in Y
.
specifies options using one or more name-value pair arguments in addition to any
of the input argument combinations in previous syntaxes. For example, you can
modify convergence control options, such as convergence tolerances and the
maximum number of additional optimization iterations.UpdatedMdl
= resume(___,Name,Value
)
[
also returns the fit information in the structure array
UpdatedMdl
,FitInfo
] = resume(___)FitInfo
.
Examples
Estimate Sample Loss and Resume Training
Resume training a Gaussian kernel regression model for more iterations to improve the regression loss.
Load the carbig
data set.
load carbig
Specify the predictor variables (X
) and the response variable (Y
).
X = [Acceleration,Cylinders,Displacement,Horsepower,Weight]; Y = MPG;
Delete rows of X
and Y
where either array has NaN
values. Removing rows with NaN
values before passing data to fitrkernel
can speed up training and reduce memory usage.
R = rmmissing([X Y]); % Data with missing entries removed
X = R(:,1:5);
Y = R(:,end);
Reserve 10% of the observations as a holdout sample. Extract the training and test indices from the partition definition.
rng(10) % For reproducibility N = length(Y); cvp = cvpartition(N,'Holdout',0.1); idxTrn = training(cvp); % Training set indices idxTest = test(cvp); % Test set indices
Train a kernel regression model. Standardize the training data, set the iteration limit to 5, and specify 'Verbose',1
to display diagnostic information.
Xtrain = X(idxTrn,:); Ytrain = Y(idxTrn); Mdl = fitrkernel(Xtrain,Ytrain,'Standardize',true, ... 'IterationLimit',5,'Verbose',1)
|=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 0 | 5.691016e+00 | 0.000000e+00 | 5.852758e-02 | | 0 | | LBFGS | 1 | 1 | 5.086537e+00 | 8.000000e+00 | 5.220869e-02 | 9.846711e-02 | 256 | | LBFGS | 1 | 2 | 3.862301e+00 | 5.000000e-01 | 3.796034e-01 | 5.998808e-01 | 256 | | LBFGS | 1 | 3 | 3.460613e+00 | 1.000000e+00 | 3.257790e-01 | 1.615091e-01 | 256 | | LBFGS | 1 | 4 | 3.136228e+00 | 1.000000e+00 | 2.832861e-02 | 8.006254e-02 | 256 | | LBFGS | 1 | 5 | 3.063978e+00 | 1.000000e+00 | 1.475038e-02 | 3.314455e-02 | 256 | |=================================================================================================================|
Mdl = RegressionKernel ResponseName: 'Y' Learner: 'svm' NumExpansionDimensions: 256 KernelScale: 1 Lambda: 0.0028 BoxConstraint: 1 Epsilon: 0.8617
Mdl
is a RegressionKernel
model.
Estimate the epsilon-insensitive error for the test set.
Xtest = X(idxTest,:); Ytest = Y(idxTest); L = loss(Mdl,Xtest,Ytest,'LossFun','epsiloninsensitive')
L = 2.0674
Continue training the model by using resume
. This function continues training with the same options used for training Mdl
.
UpdatedMdl = resume(Mdl,Xtrain,Ytrain);
|=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 0 | 3.063978e+00 | 0.000000e+00 | 1.475038e-02 | | 256 | | LBFGS | 1 | 1 | 3.007822e+00 | 8.000000e+00 | 1.391637e-02 | 2.603966e-02 | 256 | | LBFGS | 1 | 2 | 2.817171e+00 | 5.000000e-01 | 5.949008e-02 | 1.918084e-01 | 256 | | LBFGS | 1 | 3 | 2.807294e+00 | 2.500000e-01 | 6.798867e-02 | 2.973097e-02 | 256 | | LBFGS | 1 | 4 | 2.791060e+00 | 1.000000e+00 | 2.549575e-02 | 1.639328e-02 | 256 | | LBFGS | 1 | 5 | 2.767821e+00 | 1.000000e+00 | 6.154419e-03 | 2.468903e-02 | 256 | | LBFGS | 1 | 6 | 2.738163e+00 | 1.000000e+00 | 5.949008e-02 | 9.476263e-02 | 256 | | LBFGS | 1 | 7 | 2.719146e+00 | 1.000000e+00 | 1.699717e-02 | 1.849972e-02 | 256 | | LBFGS | 1 | 8 | 2.705941e+00 | 1.000000e+00 | 3.116147e-02 | 4.152590e-02 | 256 | | LBFGS | 1 | 9 | 2.701162e+00 | 1.000000e+00 | 5.665722e-03 | 9.401466e-03 | 256 | | LBFGS | 1 | 10 | 2.695341e+00 | 5.000000e-01 | 3.116147e-02 | 4.968046e-02 | 256 | | LBFGS | 1 | 11 | 2.691277e+00 | 1.000000e+00 | 8.498584e-03 | 1.017446e-02 | 256 | | LBFGS | 1 | 12 | 2.689972e+00 | 1.000000e+00 | 1.983003e-02 | 9.938921e-03 | 256 | | LBFGS | 1 | 13 | 2.688979e+00 | 1.000000e+00 | 1.416431e-02 | 6.606316e-03 | 256 | | LBFGS | 1 | 14 | 2.687787e+00 | 1.000000e+00 | 1.621956e-03 | 7.089542e-03 | 256 | | LBFGS | 1 | 15 | 2.686539e+00 | 1.000000e+00 | 1.699717e-02 | 1.169701e-02 | 256 | | LBFGS | 1 | 16 | 2.685356e+00 | 1.000000e+00 | 1.133144e-02 | 1.069310e-02 | 256 | | LBFGS | 1 | 17 | 2.685021e+00 | 5.000000e-01 | 1.133144e-02 | 2.104248e-02 | 256 | | LBFGS | 1 | 18 | 2.684002e+00 | 1.000000e+00 | 2.832861e-03 | 6.175231e-03 | 256 | | LBFGS | 1 | 19 | 2.683507e+00 | 1.000000e+00 | 5.665722e-03 | 3.724026e-03 | 256 | | LBFGS | 1 | 20 | 2.683343e+00 | 5.000000e-01 | 5.665722e-03 | 9.549119e-03 | 256 | |=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 21 | 2.682897e+00 | 1.000000e+00 | 5.665722e-03 | 7.172867e-03 | 256 | | LBFGS | 1 | 22 | 2.682682e+00 | 1.000000e+00 | 2.832861e-03 | 2.587726e-03 | 256 | | LBFGS | 1 | 23 | 2.682485e+00 | 1.000000e+00 | 2.832861e-03 | 2.953648e-03 | 256 | | LBFGS | 1 | 24 | 2.682326e+00 | 1.000000e+00 | 2.832861e-03 | 7.777294e-03 | 256 | | LBFGS | 1 | 25 | 2.681914e+00 | 1.000000e+00 | 2.832861e-03 | 2.778555e-03 | 256 | | LBFGS | 1 | 26 | 2.681867e+00 | 5.000000e-01 | 1.031085e-03 | 3.638352e-03 | 256 | | LBFGS | 1 | 27 | 2.681725e+00 | 1.000000e+00 | 5.665722e-03 | 1.515199e-03 | 256 | | LBFGS | 1 | 28 | 2.681692e+00 | 5.000000e-01 | 1.314940e-03 | 1.850055e-03 | 256 | | LBFGS | 1 | 29 | 2.681625e+00 | 1.000000e+00 | 2.832861e-03 | 1.456903e-03 | 256 | | LBFGS | 1 | 30 | 2.681594e+00 | 5.000000e-01 | 2.832861e-03 | 8.704875e-04 | 256 | | LBFGS | 1 | 31 | 2.681581e+00 | 5.000000e-01 | 8.498584e-03 | 3.934768e-04 | 256 | | LBFGS | 1 | 32 | 2.681579e+00 | 1.000000e+00 | 8.498584e-03 | 1.847866e-03 | 256 | | LBFGS | 1 | 33 | 2.681553e+00 | 1.000000e+00 | 9.857038e-04 | 6.509825e-04 | 256 | | LBFGS | 1 | 34 | 2.681541e+00 | 5.000000e-01 | 8.498584e-03 | 6.635528e-04 | 256 | | LBFGS | 1 | 35 | 2.681499e+00 | 1.000000e+00 | 5.665722e-03 | 6.194735e-04 | 256 | | LBFGS | 1 | 36 | 2.681493e+00 | 5.000000e-01 | 1.133144e-02 | 1.617763e-03 | 256 | | LBFGS | 1 | 37 | 2.681473e+00 | 1.000000e+00 | 9.869233e-04 | 8.418484e-04 | 256 | | LBFGS | 1 | 38 | 2.681469e+00 | 1.000000e+00 | 5.665722e-03 | 1.069722e-03 | 256 | | LBFGS | 1 | 39 | 2.681432e+00 | 1.000000e+00 | 2.832861e-03 | 8.501930e-04 | 256 | | LBFGS | 1 | 40 | 2.681423e+00 | 2.500000e-01 | 1.133144e-02 | 9.543716e-04 | 256 | |=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 41 | 2.681416e+00 | 1.000000e+00 | 2.832861e-03 | 8.763251e-04 | 256 | | LBFGS | 1 | 42 | 2.681413e+00 | 5.000000e-01 | 2.832861e-03 | 4.101888e-04 | 256 | | LBFGS | 1 | 43 | 2.681403e+00 | 1.000000e+00 | 5.665722e-03 | 2.713209e-04 | 256 | | LBFGS | 1 | 44 | 2.681392e+00 | 1.000000e+00 | 2.832861e-03 | 2.115241e-04 | 256 | | LBFGS | 1 | 45 | 2.681383e+00 | 1.000000e+00 | 2.832861e-03 | 2.872858e-04 | 256 | | LBFGS | 1 | 46 | 2.681374e+00 | 1.000000e+00 | 8.498584e-03 | 5.771001e-04 | 256 | | LBFGS | 1 | 47 | 2.681353e+00 | 1.000000e+00 | 2.832861e-03 | 3.160871e-04 | 256 | | LBFGS | 1 | 48 | 2.681334e+00 | 5.000000e-01 | 8.498584e-03 | 1.045502e-03 | 256 | | LBFGS | 1 | 49 | 2.681314e+00 | 1.000000e+00 | 7.878714e-04 | 1.505118e-03 | 256 | | LBFGS | 1 | 50 | 2.681306e+00 | 1.000000e+00 | 2.832861e-03 | 4.756894e-04 | 256 | | LBFGS | 1 | 51 | 2.681301e+00 | 1.000000e+00 | 1.133144e-02 | 3.664873e-04 | 256 | | LBFGS | 1 | 52 | 2.681288e+00 | 1.000000e+00 | 2.832861e-03 | 1.449821e-04 | 256 | | LBFGS | 1 | 53 | 2.681287e+00 | 2.500000e-01 | 1.699717e-02 | 2.357176e-04 | 256 | | LBFGS | 1 | 54 | 2.681282e+00 | 1.000000e+00 | 5.665722e-03 | 2.046663e-04 | 256 | | LBFGS | 1 | 55 | 2.681278e+00 | 1.000000e+00 | 2.832861e-03 | 2.546349e-04 | 256 | | LBFGS | 1 | 56 | 2.681276e+00 | 2.500000e-01 | 1.307940e-03 | 1.966786e-04 | 256 | | LBFGS | 1 | 57 | 2.681274e+00 | 5.000000e-01 | 1.416431e-02 | 1.005310e-04 | 256 | | LBFGS | 1 | 58 | 2.681271e+00 | 5.000000e-01 | 1.118892e-03 | 1.147324e-04 | 256 | | LBFGS | 1 | 59 | 2.681269e+00 | 1.000000e+00 | 2.832861e-03 | 1.332914e-04 | 256 | | LBFGS | 1 | 60 | 2.681268e+00 | 2.500000e-01 | 1.132045e-03 | 5.441369e-05 | 256 | |=================================================================================================================|
Estimate the epsilon-insensitive error for the test set using the updated model.
UpdatedL = loss(UpdatedMdl,Xtest,Ytest,'LossFun','epsiloninsensitive')
UpdatedL = 1.8933
The regression error decreases by a factor of about 0.08
after resume
updates the regression model with more iterations.
Resume Training with Modified Convergence Control Training Options
Load the carbig
data set.
load carbig
Specify the predictor variables (X
) and the response variable (Y
).
X = [Acceleration,Cylinders,Displacement,Horsepower,Weight]; Y = MPG;
Delete rows of X
and Y
where either array has NaN
values. Removing rows with NaN
values before passing data to fitrkernel
can speed up training and reduce memory usage.
R = rmmissing([X Y]); % Data with missing entries removed
X = R(:,1:5);
Y = R(:,end);
Reserve 10% of the observations as a holdout sample. Extract the training and test indices from the partition definition.
rng(10) % For reproducibility N = length(Y); cvp = cvpartition(N,'Holdout',0.1); idxTrn = training(cvp); % Training set indices idxTest = test(cvp); % Test set indices
Train a kernel regression model with relaxed convergence control training options by using the name-value arguments 'BetaTolerance'
and 'GradientTolerance'
. Standardize the training data, and specify 'Verbose',1
to display diagnostic information.
Xtrain = X(idxTrn,:); Ytrain = Y(idxTrn); [Mdl,FitInfo] = fitrkernel(Xtrain,Ytrain,'Standardize',true,'Verbose',1, ... 'BetaTolerance',2e-2,'GradientTolerance',2e-2);
|=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 0 | 5.691016e+00 | 0.000000e+00 | 5.852758e-02 | | 0 | | LBFGS | 1 | 1 | 5.086537e+00 | 8.000000e+00 | 5.220869e-02 | 9.846711e-02 | 256 | | LBFGS | 1 | 2 | 3.862301e+00 | 5.000000e-01 | 3.796034e-01 | 5.998808e-01 | 256 | | LBFGS | 1 | 3 | 3.460613e+00 | 1.000000e+00 | 3.257790e-01 | 1.615091e-01 | 256 | | LBFGS | 1 | 4 | 3.136228e+00 | 1.000000e+00 | 2.832861e-02 | 8.006254e-02 | 256 | | LBFGS | 1 | 5 | 3.063978e+00 | 1.000000e+00 | 1.475038e-02 | 3.314455e-02 | 256 | |=================================================================================================================|
Mdl
is a RegressionKernel
model.
Estimate the epsilon-insensitive error for the test set.
Xtest = X(idxTest,:); Ytest = Y(idxTest); L = loss(Mdl,Xtest,Ytest,'LossFun','epsiloninsensitive')
L = 2.0674
Continue training the model by using resume
with modified convergence control options.
[UpdatedMdl,UpdatedFitInfo] = resume(Mdl,Xtrain,Ytrain, ... 'BetaTolerance',2e-3,'GradientTolerance',2e-3);
|=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 0 | 3.063978e+00 | 0.000000e+00 | 1.475038e-02 | | 256 | | LBFGS | 1 | 1 | 3.007822e+00 | 8.000000e+00 | 1.391637e-02 | 2.603966e-02 | 256 | | LBFGS | 1 | 2 | 2.817171e+00 | 5.000000e-01 | 5.949008e-02 | 1.918084e-01 | 256 | | LBFGS | 1 | 3 | 2.807294e+00 | 2.500000e-01 | 6.798867e-02 | 2.973097e-02 | 256 | | LBFGS | 1 | 4 | 2.791060e+00 | 1.000000e+00 | 2.549575e-02 | 1.639328e-02 | 256 | | LBFGS | 1 | 5 | 2.767821e+00 | 1.000000e+00 | 6.154419e-03 | 2.468903e-02 | 256 | | LBFGS | 1 | 6 | 2.738163e+00 | 1.000000e+00 | 5.949008e-02 | 9.476263e-02 | 256 | | LBFGS | 1 | 7 | 2.719146e+00 | 1.000000e+00 | 1.699717e-02 | 1.849972e-02 | 256 | | LBFGS | 1 | 8 | 2.705941e+00 | 1.000000e+00 | 3.116147e-02 | 4.152590e-02 | 256 | | LBFGS | 1 | 9 | 2.701162e+00 | 1.000000e+00 | 5.665722e-03 | 9.401466e-03 | 256 | | LBFGS | 1 | 10 | 2.695341e+00 | 5.000000e-01 | 3.116147e-02 | 4.968046e-02 | 256 | | LBFGS | 1 | 11 | 2.691277e+00 | 1.000000e+00 | 8.498584e-03 | 1.017446e-02 | 256 | | LBFGS | 1 | 12 | 2.689972e+00 | 1.000000e+00 | 1.983003e-02 | 9.938921e-03 | 256 | | LBFGS | 1 | 13 | 2.688979e+00 | 1.000000e+00 | 1.416431e-02 | 6.606316e-03 | 256 | | LBFGS | 1 | 14 | 2.687787e+00 | 1.000000e+00 | 1.621956e-03 | 7.089542e-03 | 256 | |=================================================================================================================|
Estimate the epsilon-insensitive error for the test set using the updated model.
UpdatedL = loss(UpdatedMdl,Xtest,Ytest,'LossFun','epsiloninsensitive')
UpdatedL = 1.8891
The regression error decreases after resume
updates the regression model with smaller convergence tolerances.
Display the outputs FitInfo
and UpdatedFitInfo
.
FitInfo
FitInfo = struct with fields:
Solver: 'LBFGS-fast'
LossFunction: 'epsiloninsensitive'
Lambda: 0.0028
BetaTolerance: 0.0200
GradientTolerance: 0.0200
ObjectiveValue: 3.0640
GradientMagnitude: 0.0148
RelativeChangeInBeta: 0.0331
FitTime: 0.0392
History: [1x1 struct]
UpdatedFitInfo
UpdatedFitInfo = struct with fields:
Solver: 'LBFGS-fast'
LossFunction: 'epsiloninsensitive'
Lambda: 0.0028
BetaTolerance: 0.0020
GradientTolerance: 0.0020
ObjectiveValue: 2.6878
GradientMagnitude: 0.0016
RelativeChangeInBeta: 0.0071
FitTime: 0.0441
History: [1x1 struct]
Both trainings terminate because the software satisfies the absolute gradient tolerance.
Plot the gradient magnitude versus the number of iterations by using UpdatedFitInfo.History.GradientMagnitude
. Note that the History
field of UpdatedFitInfo
includes the information in the History
field of FitInfo
.
semilogy(UpdatedFitInfo.History.GradientMagnitude,'o-') ax = gca; ax.XTick = 1:21; ax.XTickLabel = UpdatedFitInfo.History.IterationNumber; grid on xlabel('Number of Iterations') ylabel('Gradient Magnitude')
The first training terminates after five iterations because the gradient magnitude becomes less than 2e-2
. The second training terminates after 14 iterations because the gradient magnitude becomes less than 2e-3
.
Input Arguments
Mdl
— Kernel regression model
RegressionKernel
model object
Kernel regression model, specified as a RegressionKernel
model object. You can create a
RegressionKernel
model object using fitrkernel
.
X
— Predictor data used to train Mdl
n-by-p numeric matrix
Predictor data used to train Mdl
, specified as an
n-by-p numeric matrix, where
n is the number of observations and
p is the number of predictors.
Data Types: single
| double
Y
— Response data used to train Mdl
numeric vector
Response data used to train Mdl
, specified as a
numeric vector.
Data Types: double
| single
Tbl
— Sample data used to train Mdl
table
Sample data used to train Mdl
, specified as a table.
Each row of Tbl
corresponds to one observation, and
each column corresponds to one predictor variable. Optionally,
Tbl
can contain additional columns for the response
variable and observation weights. Tbl
must contain all
of the predictors used to train Mdl
. Multicolumn
variables and cell arrays other than cell arrays of character vectors are
not allowed.
If you trained Mdl
using sample data contained in a
table, then the input data for resume
must also be in a
table.
Note
resume
should run only on the same training data and
observation weights (Weights
) used to train
Mdl
. The resume
function uses the same
training options, such as feature expansion, used to train
Mdl
.
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
Example: UpdatedMdl = resume(Mdl,X,Y,'BetaTolerance',1e-3)
resumes training with the same options used to train Mdl
, except
the relative tolerance on the linear coefficients and the bias term.
Weights
— Observation weights used to train Mdl
numeric vector | name of variable in Tbl
Observation weights used to train Mdl
, specified
as the comma-separated pair consisting of 'Weights'
and a numeric vector or the name of a variable in
Tbl
.
If
Weights
is a numeric vector, then the size ofWeights
must be equal to the number of rows inX
orTbl
.If
Weights
is the name of a variable inTbl
, you must specifyWeights
as a character vector or string scalar. For example, if the weights are stored asTbl.W
, then specifyWeights
as'W'
. Otherwise, the software treats all columns ofTbl
, includingTbl.W
, as predictors.
If you supply the observation weights, resume
normalizes Weights
to sum to 1.
Data Types: double
| single
| char
| string
BetaTolerance
— Relative tolerance on linear coefficients and bias term
BetaTolerance
value used to train Mdl
(default) | nonnegative scalar
Relative tolerance on the linear coefficients and the bias term (intercept), specified as a nonnegative scalar.
Let , that is, the vector of the coefficients and the bias term at optimization iteration t. If , then optimization terminates.
If you also specify GradientTolerance
, then optimization terminates when the software satisfies either stopping criterion.
By default, the value is the same BetaTolerance
value used to train Mdl
.
Example: 'BetaTolerance',1e-6
Data Types: single
| double
GradientTolerance
— Absolute gradient tolerance
GradientTolerance
value used to train Mdl
(default) | nonnegative scalar
Absolute gradient tolerance, specified as a nonnegative scalar.
Let be the gradient vector of the objective function with respect to the coefficients and bias term at optimization iteration t. If , then optimization terminates.
If you also specify BetaTolerance
, then optimization terminates when the
software satisfies either stopping criterion.
By default, the value is the same GradientTolerance
value used to train Mdl
.
Example: 'GradientTolerance',1e-5
Data Types: single
| double
IterationLimit
— Maximum number of additional optimization iterations
positive integer
Maximum number of additional optimization iterations, specified as the
comma-separated pair consisting of 'IterationLimit'
and a positive integer.
The default value is 1000 if the transformed data fits in memory
(Mdl.ModelParameters.BlockSize
), which you
specify by using the 'BlockSize'
name-value pair argument when training
Mdl
with fitrkernel
. Otherwise, the default value is 100.
Note that the default value is not the value used to train
Mdl
.
Example: 'IterationLimit',500
Data Types: single
| double
Output Arguments
UpdatedMdl
— Updated kernel regression model
RegressionKernel
model object
Updated kernel regression model, returned as a RegressionKernel
model object.
FitInfo
— Optimization details
structure array
Optimization details, returned as a structure array including fields described in this table. The fields contain final values or name-value pair argument specifications.
Field | Description |
---|---|
Solver |
Objective function minimization technique:
|
LossFunction | Loss function. Either mean squared error (MSE) or
epsilon-insensitive, depending on the type of linear
regression model. See Learner of
fitrkernel . |
Lambda | Regularization term strength. See Lambda of
fitrkernel . |
BetaTolerance | Relative tolerance on the linear coefficients and the
bias term. See BetaTolerance . |
GradientTolerance | Absolute gradient tolerance. See
GradientTolerance . |
ObjectiveValue | Value of the objective function when optimization terminates. The regression loss plus the regularization term compose the objective function. |
GradientMagnitude | Infinite norm of the gradient vector of the objective
function when optimization terminates. See
GradientTolerance . |
RelativeChangeInBeta | Relative changes in the linear coefficients and the bias
term when optimization terminates. See
BetaTolerance . |
FitTime | Elapsed, wall-clock time (in seconds) required to fit the model to the data. |
History | History of optimization information. This field also
includes the optimization information from training
Mdl . This field is empty
([] ) if you specify
'Verbose',0 when training
Mdl . For details, see Verbose and the Algorithms section of fitrkernel . |
To access fields, use dot notation. For example, to access the vector of
objective function values for each iteration, enter
FitInfo.ObjectiveValue
in the Command Window.
Examine the information provided by FitInfo
to assess
whether convergence is satisfactory.
More About
Random Feature Expansion
Random feature expansion, such as Random Kitchen Sinks [1] or Fastfood [2], is a scheme to approximate Gaussian kernels of the kernel regression algorithm for big data in a computationally efficient way. Random feature expansion is more practical for big data applications that have large training sets, but can also be applied to smaller data sets that fit in memory.
After mapping the predictor data into a high-dimensional space, the kernel regression algorithm searches for an optimal function that deviates from each response data point (yi) by values no greater than the epsilon margin (ε).
Some regression problems cannot be described adequately using a linear model. In such cases, obtain a nonlinear regression model by replacing the dot product x1x2′ with a nonlinear kernel function , where xi is the ith observation (row vector) and φ(xi) is a transformation that maps xi to a high-dimensional space (called the “kernel trick”). However, evaluating G(x1,x2), the Gram matrix, for each pair of observations is computationally expensive for a large data set (large n).
The random feature expansion scheme finds a random transformation so that its dot product approximates the Gaussian kernel. That is,
where T(x) maps x in to a high-dimensional space (). The Random Kitchen Sinks [1] scheme uses the random transformation
where is a sample drawn from and σ is a kernel scale. This scheme requires O(mp) computation and storage. The Fastfood [2] scheme introduces
another random basis V instead of Z using Hadamard
matrices combined with Gaussian scaling matrices. This random basis reduces computation cost
to O(mlog
p) and reduces storage to O(m).
You can specify values for m and σ, using the
NumExpansionDimensions
and KernelScale
name-value pair arguments of fitrkernel
, respectively.
The fitrkernel
function uses the Fastfood scheme for random feature
expansion and uses linear regression to train a Gaussian kernel regression model. Unlike
solvers in the fitrsvm
function, which require computation of the
n-by-n Gram matrix, the solver in
fitrkernel
only needs to form a matrix of size
n-by-m, with m typically much
less than n for big data.
Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.
The
resume
function supports tall arrays with the following usage
notes and limitations:
resume
does not support talltable
data.The default value for the
'IterationLimit'
name-value pair argument is relaxed to 20 when you work with tall arrays.resume
uses a block-wise strategy. For details, see the Algorithms section offitrkernel
.
For more information, see Tall Arrays.
Version History
Introduced in R2018a
See Also
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: United States.
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)