Main Content

Exploratory Analysis of Data

This example shows how to explore the distribution of data using descriptive statistics.

Generate sample data

Generate a vector containing randomly-generated sample data.

rng default  % For reproducibility
x = [normrnd(4,1,1,100),normrnd(6,0.5,1,200)];

Plot a histogram

Plot a histogram of the sample data with a normal density fit. This provides a visual comparison of the sample data and a normal distribution fitted to the data.

histfit(x)

Figure contains an axes object. The axes object contains 2 objects of type bar, line.

The distribution of the data appears to be left skewed. A normal distribution does not look like a good fit for this sample data.

Obtain a normal probability plot

Obtain a normal probability plot. This plot provides another way to visually compare the sample data to a normal distribution fitted to the data.

probplot('normal',x)

Figure contains an axes object. The axes object with title Probability plot for Normal distribution, xlabel Data, ylabel Probability contains 2 objects of type functionline, line. One or more of the lines displays its values using only markers

The probability plot also shows the deviation of data from normality.

Create a box plot

Create a box plot to visualize the statistics.

boxplot(x)

Figure contains an axes object. The axes object contains 7 objects of type line. One or more of the lines displays its values using only markers

The box plot shows the 0.25, 0.5, and 0.75 quantiles. The long lower tail and plus signs show the lack of symmetry in the sample data values.

Compute descriptive statistics

Compute the mean and median of the data.

y = [mean(x),median(x)]
y = 1×2

    5.3438    5.6872

The mean and median values seem close to each other, but a mean smaller than the median usually indicates that the data is left skewed.

Compute the skewness and kurtosis of the data.

y = [skewness(x),kurtosis(x)]
y = 1×2

   -1.0417    3.5895

A negative skewness value means the data is left skewed. The data has a larger peakedness than a normal distribution because the kurtosis value is greater than 3.

Compute z-scores

Identify possible outliers by computing the z-scores and finding the values that are greater than 3 or less than -3.

Z = zscore(x);
find(abs(Z)>3);

Based on the z-scores, the 3rd and 35th observations might be outliers.

See Also

| | | | | | |

Related Topics

Go to top of page